• 제목/요약/키워드: 인장강도감소

Search Result 971, Processing Time 0.102 seconds

Effect of Polyol Structure on the Physical Properties of Polyurethane Foam in Room and Cryogenic Temperature (폴리올 구조에 따른 폴리우레탄 폼의 상온과 초저온에서의 물성변화)

  • Kim, Sang-Bum;Kim, Chang-Bum
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.21-25
    • /
    • 2010
  • An objective of this study is to develop a polyurethane foam(PUF) maintaining its mechanical strength at room temperature as well as at extremely low temperature. The effect of temperature on the physical properties of PUF with the increase in polyol functionality was investigated. At room and cryogenic temperature, compressive strengths of the PUFs increased up to 70% and 30% with an increase in polyol functionality, respectively. At room temperature tensile strength of PUFs tends to increase as functionality of polyol increases, however, the strength at $-190^{\circ}C$ shows different tendency. Compressive strength of PUF is higher in cryogenic temperature than in room temperature. However, as the number of polyol functionality become more than 4, tensile strength of PUF is lower in cryogenic temperature than in room temperature.

Mechanical Properties of Wood-Fiber Thermoplastic Composites (목섬유(木纖維)와 열가소성(熱可塑性) 플라스틱 복합재료(複合材料)의 기계적(機械的) 성질(性質))

  • Park, Byung-Dae;Lim, Kie-Pyo;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.46-53
    • /
    • 1994
  • This study was conducted to investigate a feasibility of manufacturing wood fiber thermoplastic composites and to evaluate their mechanical properties. Wood fiber as a potential reinforcing filler was compounded with two thermoplastics (polypropylene and high density polyethylene) in high intensity thermokinetic plastic mixer aided with a wetting agent. It was found that wood fiber thermoplastic composites could be manufactured by injection molding process. The tensile and flexural strength of injection molded specimens were improved greatly with increasing wood fiber concentration. Tensile and flexural modulus increased proportionately with wood fiber concentration. Wood fiber provided reinforcement with thermoplastics in terms of strength and modulus. However, the percent elongation at break and energy to break were reduced with increasing wood fiber loadings. Impact strength also showed similar trend.

  • PDF

Relationship between RVA Properties and Film Physical Properties of Native Corn Starch and Hydroxypropylated Corn Starch (천연옥수수전분과 hydroxypropyl화 옥수수전분의 RVA특성과 필름 물성의 관계)

  • Han, Youn-Jeong;Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1023-1029
    • /
    • 2002
  • Relationship between RVA properties and physical properties of film made from native corn starch and hydroxypropylated corn starch at various levels of plasticizers was examinel. Tensile strength of the film decreased, but its elongation and water vapor permeability increased with increasing plasticizer concentration. The film with glycerol showed greater changes in physical properties than that with sorbitol. Hydroxypropylated starch film showed lower tensile strength, higher elongation, and higher water vapor permeability than the native starch film. Sorbitol resulted in films with relatively high tensile strength, whereas glycerol produced films with increased elongation. The most reliable parameters for the relationship between RVA properties and film properties were RVA peak viscosity, tensile strength, and water vapor permeability. Water vapor permeability and tensile strength had linear relationship with RVA properties. The tensile strength and water vapor permeability of film could be predicted using the RVA peak viscosity.

The Development of ACNR Conductor( I ) - Mechanical Properties (ACNR가공송전선의 개발( I ) - 기계적 특성)

  • Kim, Shang-Shu;Kim, Byung-Geol;Lee, Hee-Woong;Park, Joo-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.635-636
    • /
    • 2005
  • 최근에 미국이나 러시아를 중심으로 가공승전선의 승전효율을 증대시키고자 하는 연구가 활발히 이루어지고 있으며 어느 정도 성과를 거두고 있다. ACSR가공송전선에서 교류전류의 흐름에 의하여 코어 (Core)에 자기장이 발생되어 투자율이 증가되고 이로 인하여 알루미늄층에서 전류밀도의 재 분포, skin effect 등으로 인하여 전력손실이 발생된다. 본 연구에서는 기존의 ACSR가공송전선의 코어 (Core)인 고탄소강선 대신에 비자성이면서 고강도인 새로운 강선을 코어재료로 채택한 ACNR(Aluminum Conductor Nonmagnetic Steel Reinforced)가공송전선을 개발하여 전력손실을 감소시켰다.

  • PDF

Influence of Inorganic Filler on Properties of EPDM Compounds (무기 충전제가 EPDM 배합물의 특성에 미치는 영향)

  • Choi, Sung-Seen;Kim, Ok-Bae
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.138-143
    • /
    • 2011
  • EPDM compounds and vulcanizates containing inorganic filler such as talc, calcium carbonate, or clay as well as carbon black were prepared, and the influence of inorganic filler on properties of the EPDM compounds and vulcanizates were investigated. The bound rubber contents did not significantly increase even though the inorganic filler was added. There were big aggregates in the EPDM samples with high loading inorganic filler. By adding the inorganic filler, the cure times tended to increase and the delta torque decreased. The modulus were on the whole decreased, whereas the elongation at break, tensile strength, and tear strength were increased by adding the inorganic filler. The decreased modulus and increased elongation at break can be explained with the decreased delta torque, the increases of tensile strength and tear strength can be explained with the increased elongation at break. By adding the inorganic filler, level of reinforcing in the EPDM compounds did not increase and the crosslink density decreased.

Effects of PE (Polyethylene) and GF (Glass Fiber) Addition on Tensile Strength and Elongation of ABS (Acrylonitrile Butadiene Styrene) Recovered from Waste LCDs (폐(廢)LCD에서 회수(回收)된 ABS(Acrylonitrile Butadiene Styrene)의 인장강도(引張强度)와 연신율(延伸率)에 미치는 PE(Polyethylene)와 유리섬유(纖維)(Glass Fiber) 첨가효과(添加效果))

  • Lee, Sungkyu;Cho, Sung-Su;Lee, Soo-Young;Park, Jae Layng;Hong, Myung Hwan;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.50-56
    • /
    • 2013
  • Recycled plastic composites of ABS/PE (50/50 and 20/80) and ABS/GF (90/10) were fabricated from plastic components of waste LCDs and effects of PE composition on elongation of ABS/PE composites were investigated. Increased PE contents improved elongation of the composite from 2.4% to 13%, which was attributed to increased crystalline behavior of the ABS/PE composite afforded by ductile PE fraction: SEM fractographs showed some sign of plastic deformation of PE matrix before ductile fracture of the composites.

Effect of Cutting Off Tension Bars in R/C Beams On the Full Scale and Model Specimens (철근콘트리트 보에서 체단된 철근의 효과에 관한 연구 실물 및 축소모형실험을 중심으로)

  • 이리형;최창식;임재형
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.1
    • /
    • pp.79-90
    • /
    • 1990
  • The purpose of this paper is to study on the effect of cutting off tension bars in reinforced concrete beams. that is, the ultimate strength, the failure mode and thl} tension stress distribution through the span. To achieve this purpose, a full-scale frame and seven small scale model beams (five rectangular and two T-section beams) were tested. The four main model specimens and two speciml}ns without cutting off tension bars 1,'{ere analyzed as plane stmss element with package program ADINA. As a result of test and analysis, the shorter' distance bet ween the reaction point and the cutting off point, the higher the ultimate strength of a bl}am will be when other physical properties are equal.

Probabilistic Fiber Strength of Composite Pressure Vessel (복합재 압력용기의 확률 섬유 강도)

  • 황태경;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, probabilistic failure analysis based on Weibull distribution function is proposed to predict the fiber strength of composite pressure vessel. And, experimental tests were performed using fiber strand specimens, unidirectional laminate specimens and composite pressure vessels to confirm the volumetric size effect on the fiber strength. As an analytical method, the Weibull weakest link model and the sequential multi-step failure model are considered and mutually compared. The volumetric size effect shows the clearly observed tendency towards fiber strength degradation with increasing stressed volume. Good agreement of fiber strength distribution was shown between test data and predicted results for unidirectional laminate and hoop ply in pressure vessel. The site effect on fiber strength depends on material and processing factors, the reduction of fiber strength due to the stressed volume shows different values according to the variation of material and processing conditions.

Microfailure Degradation Mechanisms and Interfacial Properties of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Implant용 Bioabsorbable 복합재료의 미세파괴 분해메커니즘과 계면물성)

  • 박종만;김대식
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.15-26
    • /
    • 2001
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites fur implant materials were investigated using micromechanical technique and nondestructive acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas these of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. AE amplitude and AE energy of PEA fiber decreased gradually, and their distributions became narrower than those in the initial state with hydrolysis time. In case of bioactive glass fiber, AE amplitude and AE energy in tensile failure were much higher than in compression. In addition, AE parameters at the initial state were much higher than those after degradation under both tensile and compressive tests. In this work, interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

Thermal Aging Behavior of H-NBR/NBR Blend (H-NBR/NBR 블렌드의 열노화거동)

  • Choi, Won-Seok;Kim, Gun-Wan;Do, Je-Sung;Yoo, Myung-Ho;Ryu, Sung-Hun
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.132-137
    • /
    • 2011
  • In the present investigation, thermal aging behavior of H-NBR/NBR blend with various H-NBR content was investigated. Mixture of dicumyl peroxide and sulfur were used as a curing agent. The influence of the thermal aging of the H-NBR/NBR blends on the solid state properties such as tensile strength, elongation at break, hardness and abrasion resistance was investigated. Tensile strength was increased with increasing H-NBR content, while abrasion resistance was decreased. Both elongation at break and hardness were not affected by the addition of H-NBR. The properties such as hardness, tensile strength and elongation at break of the aged samples were lower than unaged samples. However, the rate of deterioration of those properties was decreased by increasing the H-NBR content, which indicated that improved thermal aging behavior was obtained by the addition of H-NBR. Abrasion loss was increased with increasing aging time, but it became less by the addition of H-NBR addition.