• Title/Summary/Keyword: 인자분석

Search Result 8,608, Processing Time 0.039 seconds

A Classification of Rainfall Regions in Pakistan (파키스탄의 강수지역 구분)

  • Hussain, Mian Sabir;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.5
    • /
    • pp.605-623
    • /
    • 2009
  • This study is aimed to classify rainfall regions in Pakistan. Classification of rainfall regions is essential to understand rainfall patterns in Pakistan. Rainfall patterns have been investigated using a factor and cluster analysis technique by 10-days rainfall parameter. The data used here have been obtained from 32 specific weather stations of PMD (Pakistan Meteorological Department) for the period of January 1980 to December 2006. The results obtained from factor analysis provide three factors and these three factors accounts for 94.60% of the total variance. For a better understanding of rainfall regions, cluster analysis method has been applied. The clustering procedure is based on the Wards method algorithm. Overall, these rainfall regions have been divided into six groups. The boundary of the region is determined by the topology such as Baluchistan plateau, Indus plain, Hindu Kush and Himalaya ranges.

Predictation of Precipitation using Empirical Mode Decomposition (경험적 모드분해법을 활용한 우리나라 강수의 예측)

  • Choi, Wonyoung;Shin, Hongjoon;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.147-147
    • /
    • 2016
  • 최근 기후변화로 인한 기상이변이 빈번히 발생하면서 그로 인한 피해도 점점 증가하고 있다. 이를 최소화하기 위해서는 기후변화가 강수에 미치는 영향에 대한 연구가 필요하며, 특히 강수의 기후변화를 고려한 장기적인 변동에 대한 예측이 매우 중요하다. 그 중, 기후변화로 인한 강수현상의 변화를 분석하기 위한 방법 중 하나로 강수 현상이 주변 기후 요소의 분포에 영향을 받는다는 가정 하에 기상인자를 통하여 강수를 예측하는 방법이 있다. 우리나라에 영향을 미치는 주변 기상인자들과 강수 간의 상관관계를 분석하여 상관관계가 높게 나타나는 기상인자를 통해 우리나라 강수량을 예측하면 장기적인 관점에서 강수 예측의 정확도를 높일 수 있다. 하지만 상관관계 분석에 있어서 강수 원 자료 와 기상인자간의 상관관계를 비교할 경우 원 자료가 가지는 큰 변동성으로 인해 정확한 상관관계 분석이 이루어지지 않을 가능성이 크다. 따라서 강수자료를 분해하여 분해된 요소별로 상관관계를 분석하여 분석의 정확도를 높일 필요가 있다. 다양한 자료 분해 방법중 경험적 모드분해법(Empirical Mode Decomposition, EMD)을 사용할 경우 자료의 분해에 있어서 주기성, 경향성에 따라 분해가 가능하며, 비정상성을 가지고 있는 시계열에 대해 효과적으로 분해가 가능한 장점이 있다. 본 연구에서는 30년 이상의 자료기간을 가지는 지점의 강수량 자료를 바탕으로 경험적 모드분해법을 이용하여 강수자료를 분해하고, 이를 다양한 기상인자와의 상관관계를 분석함으로써, 우리나라 강수량 변동과 연관이 있는 기상인자들을 선별하였다. 선별된 기상인지를 바탕으로 다중회귀분석을 수행하여 기상인자를 독립변수로 하는 강수 예측식을 구축하여 우리나라 강수의 예측 가능성을 살펴보고자 한다.

  • PDF

Estimation of Weights for Flood Vulnerability Indicators (홍수위험도 평가인자의 가중치 추정)

  • Lee, Gyu-Min;Chung, Eun-Sung;Jun, Kyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.415-415
    • /
    • 2012
  • 유역의 홍수위험도를 평가하기 위하여 선행 연구로서 DPSIR framework를 적용한 인자를 선정하였다. 이때 인자의 범위를 사회적, 경제적, 환경적 분야로 구분하고 각 분야에 대하여 홍수로 인하여 야기되는 유역의 다양한 영향요소를 포함하여 인자를 선정하였다. 본 연구에서는 이를 대상으로 각 인자의 가중치를 선정하기 위하여 패널식 조사연구기법인 Delphi 방법을 적용하였다. Delphi 기법은 델파이 절차가 반복되는 동안 조사 참여자에게 전회의 조사 결과, 즉 통계적 집단 반응을 피드백하며 참여자는 이를 참고하여 자신의 판단을 수정 보완 할 수 있는 방법이다. 따라서 1차 설문조사를 통하여 각 패널은 홍수위험도 평가 인자에 대해서 주관적인 가중치를 선정하고 이를 분석한 결과를 피드백 받아 참고한 후 2차 설문조사에 응하여 가중치를 재선정하게 된다. 조사에 참여할 패널의 선정은 수자원분야의 전문가를 대상으로 하였다. 또한 각 인자에 대한 가중치를 수집하는 방법을 다양하게 설정하여 기법에 따른 영향을 검토하였다. 수집기법은 상대적 가중치 결정법 중에서 가장 많이 사용되는 순위법과 직접입력법, 절대적인 기준에 대한 가중치를 수집하기 위하여 Fuzzy 가중치 입력법을 사용하였으며 이 때 각 인자가 소속되는 분야와 DPSIR framework 요소에 대해서도 별도로 가중치를 수집하여 최종적인 인자의 가중치를 결정하였다. 본 연구는 추가 연구를 통해 남한강에 적용되며 인자의 자료는 문헌조사, 통계자료 조사 및 수리학적 수치모형 등의 분석을 통해 수집될 예정이다. 이를 통하여 사회, 경제, 문화, 환경적인 측면을 고려한 인자들을 반영한 하천의 구간별 상대적 홍수취약도를 정량적으로 제시할 수 있으며 하천 구간별 치수관리 우선순위를 결정하는데 적극적으로 활용될 수 있다.

  • PDF

Factor Analysis of USLE about Bongdong station in the Mankyoung river basin - Focused on Rainfall Erosivity(R) - (만경강 봉동 수위관측소 유역에 대한 USLE 인자특성 분석 - 강우침식인자를 중심으로 -)

  • Lee, Jae-Hyug;Shim, Eun-Jeung;Lee, Yeon-Kil;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.511-511
    • /
    • 2012
  • 강우침식인자는 강우사상(rainfall event)으로 인한 토양침식량을 산정하는 지표(index)로서 일정기간 토양침식의 정도를 산정할 수 있는 범용토양유식공식(Universal Soil Loss Equation)을 구성하고 있는 인자 중 가장 값의 변동성이 크고 동일한 조건에서 토양유실량 산정에 큰 영향을 미치는 인자다. 강우침식인자의 산정은 유량탐사 센서나 강우게이지 자료(pluviograph)로부터 12.7mm이상, 최소 15분간 6.35mm이상의 호우사상을 추출하여 해당하는 호우사상에 대한 강우에너지식에 30분 최대강우강도를 곱한 값의 연평균값을 계산한 것이다(Wischmeier and Smith, 1978). 본 연구에서는 범용토양유실공식(USLE)의 강우침식인 자(R)를 산정하고 지리정보시스템(GIS)을 활용하여 공간적 분포를 나타낼 수 있는 만경강 유역 상류부에 위치한 봉동 수위관측소 유역의 토양침식도를 연도별로 도시하였으며, 2001~2010년까지의 10개년 강우량을 바탕으로 토양침삭량을 산정하였다. 그 결과는 강우량이 많을수록 침식인자가 크게 산정되는 일반적인 결과를 기대 할 수 있지만, 2001~2010년까지 10개년 강우침식인자를 분석한 결과 강우량이 많다하여 침식인자의 변화 값이 크게 반응하는 값보다 강우강도에 의해 침식인자가 크게 반응하는 결과를 보였다. 따라서 강우침식인자는 강우량보다는 강우강도에 좌우됨을 알 수 있었다.

  • PDF

A study to determine the design parameters of Lifeboat Davit by Using FEM and Taguchi Method (유한요소해석과 다구찌법을 이용한 구명정 진수장치 설계인자 결정에 관한 연구)

  • Choi, Joo-Hyoung;An, Jung-Chul;Kim, Jeong-Hwan;Ryu, Chan-Uk;Choi, Young-Sam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.554-559
    • /
    • 2010
  • Lifeboat davit is composed of main frame, main arm, upper arm and support bar. In this paper, design parameters that affect the bending stiffness were set as plate thickness, width and hight of upper arm. To analyze the influence of parameter factors, FEM and Taguchi Method were used. This paper will help substantially in many industries.

The Analysis of Regional Characteristics of the Aging Population in Korea (한국 인구고령화의 지역적 특성 분석)

  • Choi, Jae-Heon
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.233-246
    • /
    • 2013
  • This paper investigates both the spatial patterns of aging population and its formal regional structure in 2010. The results are as follows: first, aging index shows high values in remote mountainous and coastal regions while showing relatively low values in Capital Region and large provincial cities. Aging index has low negative correlation with such variables as population increasing rate, ratio of youth population, ratio of apartments, and ratio of newly built housing. However, aging index shows high positive correlation with variables including ratio of single unit house, ratio of aged peoples' house ownerships, ratio of welfare recipients, ratio of old housing, and number of public healthcare facilities. Secondly, four factors are identified from factor analysis including aging factor, welfare factor, economic vitality factor, and new town factor. The aging level of a region is negatively related to the strong level of those factors. Thirdly, cluster analysis results in four different types of formal regions including rural mountainous coastal type, rural non-capital region type, large metropolitan type, and provincial industrial city type.

  • PDF

The Extraction of Soil Erosion Model Factors Using GSIS Spatial Analysis (GSIS 공간분석을 활용한 토양침식모형의 입력인자 추출에 관한 연구)

  • 이환주;김환기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.1
    • /
    • pp.27-37
    • /
    • 2001
  • Soil erosion by outflow of water or rainfall has caused many environmental problems as declining agricultural productivity, damaging pasture and preventing flow of water. As the interest in environment is increasing lately, soil erosion is considered as a serious problem, whereas the systematic regulation and analysis for that have not established yet. This research shows the method of extracting factor entered model which expects soil erosion by GSIS. There are several erosion model such as ANSWER, WEPP, RUSLE. The research used RUSLE erosion model which could expect general soil erosion connected easily with GSIS data. RUSLE's input factors are composed of rainfall runoff factor(R). soil erodibility factor(K), slope length factor(L), slope steepness factor(S), cover management factor(C) and support practice factor(P). The general equation used to extract L, S factor on the RUSLE to be oriented for agricultural area has some limitation to apply whole watershed. So, on this study we used a revised empirical equation applicable to the watershed by grid on the GSIS. Also, we analyzed RUSLE factors by watershed being analyzed with watershed extraction algorithm. Then we could calculate the minimum, maximum. mean and standard deviation of RUSLE factors by watershed.

  • PDF

Evaluation of Rainfall Erosivity Factor Estimation Using Machine and Deep Learning Models (머신러닝 및 딥러닝을 활용한 강우침식능인자 예측 평가)

  • Lee, Jimin;Lee, Seoro;Lee, Gwanjae;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.450-450
    • /
    • 2021
  • 기후변화 보고서에 따르면 집중 호우의 강도 및 빈도 증가가 향후 몇 년동안 지속될 것이라 제시하였다. 이러한 집중호우가 빈번히 발생하게 된다면 강우 침식성이 증가하여 표토 침식에 더 취약하게 발생된다. Universal Soil Loss Equation (USLE) 입력 매개 변수 중 하나인 강우침식능인자는 토양 유실을 예측할때 강우 강도의 미치는 영향을 제시하는 인자이다. 선행 연구에서 USLE 방법을 사용하여 강우침식능인자를 산정하였지만, 60분 단위 강우자료를 이용하였기 때문에 정확한 30분 최대 강우강도 산정을 고려하지 못하는 한계점이 있다. 본 연구의 목적은 강우침식능인자를 이전의 진행된 방법보다 더 빠르고 정확하게 예측하는 머신러닝 모델을 개발하며, 총 월별 강우량, 최대 일 강우량 및 최대 시간별 강우량 데이터만 있어도 산정이 가능하도록 하였다. 이를 위해 본 연구에서는 강우침식능인자의 산정 값의 정확도를 높이기 위해 1분 간격 강우 데이터를 사용하며, 최근 강우 패턴을 반영하기 위해서 2013-2019년 자료로 이용했다. 우선, 월별 특성을 파악하기 위해 USLE 계산 방법을 사용하여 월별 강우침식능인자를 산정하였고, 국내 50개 지점을 대상으로 계산된 월별 강우침식능인자를 실측 값으로 정하여, 머신러닝 모델을 통하여 강우침식능인자 예측하도록 학습시켜 분석하였다. 이 연구에 사용된 머신러닝 모델들은 Decision Tree, Random Forest, K-Nearest Neighbors, Gradient Boosting, eXtreme Gradient Boost 및 Deep Neural Network을 이용하였다. 또한, 교차 검증을 통해서 모델 중 Deep Neural Network이 강우침식능인자 예측 정확도가 가장 높게 산정하였다. Deep Neural Network은 Nash-Sutcliffe Efficiency (NSE) 와 Coefficient of determination (R2)의 결과값이 0.87로서 모델의 예측성을 입증하였으며, 검증 모델을 테스트 하기 위해 국내 6개 지점을 무작위로 선별하여 강우침식능인자를 분석하였다. 본 연구 결과에서 나온 Deep Neural Network을 이용하면, 훨씬 적은 노력과 시간으로 원하는 지점에서 월별 강우침식능인자를 예측할 수 있으며, 한국 강우 패턴을 효율적으로 분석 할 수 있을 것이라 판단된다. 이를 통해 향후 토양 침식 위험을 지표화하는 것뿐만 아니라 토양 보전 계획을 수립할 수 있으며, 위험 지역을 우선적으로 선별하고 제시하는데 유용하게 사용 될 것이라 사료된다.

  • PDF

Local Linear Logistic Classification of Microarray Data Using Orthogonal Components (직교요인을 이용한 국소선형 로지스틱 마이크로어레이 자료의 판별분석)

  • Baek, Jang-Sun;Son, Young-Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.587-598
    • /
    • 2006
  • The number of variables exceeds the number of samples in microarray data. We propose a nonparametric local linear logistic classification procedure using orthogonal components for classifying high-dimensional microarray data. The proposed method is based on the local likelihood and can be applied to multi-class classification. We applied the local linear logistic classification method using PCA, PLS, and factor analysis components as new features to Leukemia data and colon data, and compare the performance of the proposed method with the conventional statistical classification procedures. The proposed method outperforms the conventional ones for each component, and PLS has shown best performance when it is embedded in the proposed method among the three orthogonal components.

Regional frequency analysis using rainfall observation data in Gangwon Province (강원도 강우관측 자료를 이용한 지역빈도분석)

  • Young Il Jeon;Sang Ug Kim;Dong Il Seo;Jae Wook Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.211-211
    • /
    • 2023
  • 본 연구에서는 지역빈도분석을 이용하고 있는 홍수량 산정 지침에서 활용되고 있는 전국대상의 강우관소에 대한 확률강우량과 강원지역에 위치한 강우관측소만을 대상으로 산정한 확률강우량을 비교하였다. 이를 위해서 강원도 지역의 48개 지점의 지속기간별 강우자료를 수집한 후, K-means 기법을 이용하여 6개의 군집으로 구분하였다. 강원도 대부분이 산악지형임을 고려해 산악효과를 야기하는 지형인자와 강우자료의 관계를 파악하였다. 국가수자원관리종합정보시스템에서 수집한 강우자료를 사용하여 지속시간별 최대강우량과 산악효과를 야기하는 지형인자로 선정한 고도 이외에 위도, 경도를 각각 추가인자로 고려해 지역빈도분석을 수행하였다. 위 지형인자와 강우자료를 이용하여 수문학적 동질한 특성을 가지는 군집을 구성하였으며, 위도와 경도를 인자로 추가하면 더욱 강한 상관성을 보임을 알 수 있었다. 군집분석결과를 통해 모수를 추정하고 적절한 분포를 선택하였으며, 이상치검정과 적합도 검정을 통해 최종 분포를 결정하였다. 고도와 위도, 경도를 모두 고려해 이용한 지역빈도분석 결과 강원도의 실제 강우특성과 마찬가지로 고도의 높낮이에 따라 강우형태를 전국단위 지역빈도분석과 비교하였다. 최종적으로 현재 활용되고 있는 홍수량 산정 지침의 확률강우량과 강원지역에 위치한 강우관측소만을 대상으로 한 지역빈도분석의 차이의 발생원인과 강원지역에서의 특이성을 결론으로 제시하였다.

  • PDF