• Title/Summary/Keyword: 인열저항

Search Result 13, Processing Time 0.024 seconds

A Study on the Fashion Accessary Product Development by Use of Korean Traditional Hanji (Part I) -Physical Properties of the Korean Traditional Paper(Hanji) Treated with Silcone resin- (전통한지를 활용한 패션 악세서리 상품개발 (제1보) -실리콘 수지로 처리된 한지의 물성변화-)

  • Kim Eun-Ah;Ryu Hyo-Seon;Kim Yong-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.3 s.151
    • /
    • pp.481-486
    • /
    • 2006
  • There are attempts to utilize Hanji for apparel material, but, the reason that the strength and durability of Hanji decrease to a great extent in the wet condition, restricts the usability of Hanji. In order to improve the resistance against water, Hanji was treated with silicone type water repellent agents. The treatment was carried out by conventional pad-dry-cure method. The optimum treatment condition was obtained by varying the concentration of repellent agent, curing temperature and time. Water repellency was tested by spray rating method. Wet and dry tensile strength, tearing resistance and abrasion resistance were examined after the treatment. Flexural stiffness and wrinkle recovery angles of hanji were also measured. In result, the optimum condition of treatment was at resin concentration of 40g/l, catalyst concentration of 20g/l(half of resin concentration), curing temperature of 160$^{circ}C$, curing time of 120 sec. Flexural stiffness of Hanji was hardly increased and wrinkle recovery angle of Hanji was improved a little by resin treatment. After the treatment, in dry condition, tensile strength and tearing resistance were little changed but abrasion resistance was improved. In wet condition, tensile strength, tearing strength and abrasion resistance were improved.

Test on the Mechanical Characteristics of Glass Fiber Membrane (유리섬유 막재의 역학적 특성에 관한 시험)

  • Park, Kang-Geun;Yoon, Sung-Kee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2008
  • Membrane structures are now used in various ways throughout the world with the merits of free shape, lightness, durability, sunlight transmittance and homogeneous material. The development of new membrane material opened up new possibility for the design of new building structures. Recently it was mainly used PVC, PVF, PVDF, PTFE, ETFE membrane for using the roofing material of membrane structures. Some problems of membrane materials have fire proofing, lack of strength, self cleaning capacity, tear resistance, durability, heat insulation, sound insulation and elasticity. For the solution of this problems, it will be tested the mechanical properties of membrane material about tensile strength, tearing resistance, etc.

  • PDF

Preparation and Physical Properties of Acrylonitrile-Butadiene Rubber Nanocomposites Filled with Zinc Dimethacrylate (디메틸아크릴산 아연을 이용한 아크릴로나이트릴-부타디엔 고무 나노복합체의 제조 및 물성)

  • 진원섭;이해성;나창운
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • Elastomeric nanocomposites were prepared by employing zinc dimethacrylate into an acrylonitrile-butadiene rubber, and their network structures, mechanical properties, and fracture morphologies were investigated according to the adding methods and contents of zinc dimethacrylate. The total crosslink density increased with increasing the zinc dimethacrylate level, due to increased ionic bonds. Both the tensile strength and tear strength increased with increasing zinc dimethacrylate loadings, and then decreased after reaching a maximum value. It was found that the tear strength and crack resistance were greatly affected by the mixing method of zinc dimethacrylate. The in-situ nanocomposites, where zinc dimethacrylate particles were formed by the reaction of zinc oxide and methacrylic acid, showed much improved tear strength and crack resistance compared to those of the nanocomposites based on the direct mixing of zinc dimetacrylate powders. This was because of the finer zinc dimethacrylate particles and improved dispersion of the in-situ nanocomposites.

Development of High-strength Cotton Fabrics for Upper of Shoes to Improve Fashionability (패션성 향상을 위한 신발갑피용 고강도 면직물 개발)

  • Lee, Jae-Ho
    • Fashion & Textile Research Journal
    • /
    • v.21 no.2
    • /
    • pp.203-208
    • /
    • 2019
  • This paper considers the moisture permeability and fashion in the upper fabrics of cotton fabric shoes woven into various tissues and properties measured to examine the use as upper fabrics. We measured the tissues of the manufactured upper fabric are 1/3 twill, $4{\times}4$ weft rib, Maya, Triple, Deformed twill design (DTD), Diamond tissues and tear strength, tensile strength, breaking elongation, stretching under load at 100N, stitch tear resistance, and fastness. In the case of $4{\times}4$ weft rib, the tear strength and tensile strength were excellent; however, the elongation and stitch tear resistance at 100N load were less than the standard value. DTD fabrics are characterized by physical properties in the warp direction that are superior to those in the weft direction; however, the tear strength and tensile strength in the weft direction are less than the standard value. The 1/3 twill fabrics showed high tensile strength value and stitch tear resistance value in the warp direction; however, toughness, the main property of the shoe upper, was below the standard value. Triple and diamond fabrics, which have a significant effect on the performance of the shoe upper fabric, also had less than the standard value of tear strength. Maya upper fabric for shoes has better properties than other upper fabrics except for the elongation at break, and the stitch tear resistance has a value of 178% in the warp direction and 214% in the weft direction compared to the standard value. Therefore, the Maya fabric showed the possibility of being used as an upper textile for shoes.

A Study on Shoes for Culinarian Use in the Kitchen Environment (조리 환경에 적합한 기능성 신발(조리화)에 관한 연구)

  • Oh, Suk-Tae
    • Culinary science and hospitality research
    • /
    • v.15 no.1
    • /
    • pp.296-308
    • /
    • 2009
  • According to Lee In-ja's research into the cooks of Korea, there are more than 1.2 million culinary professionals in Korea. However, it is hard to find studies on their work environment. From this point, this study aims to examine the shoes worn by culinarians in their workplace and facilitate the improved environment to protect culinary professionals against potential dangers such as slips, occupational and industrial injuries and fatigue, on the basis of the shoes they wear. The research was conducted on a representative cross section of safety shoes currently worn by culinary professionals. The four factors to be tested and measured for the study were weight, slip resistance, internal tearing strength and splitting resistance. Findings on inquiry showed that the shoes tested were quite heavy, slippery and readily liable to splitting under low stress - when compared to standardized base figures. In accordance with the results of this experiment, guidelines for four factors of manufacture were suggested. First, chef's shoes should weigh not more than 1% of a wearers weight. Second, they should exhibit more than 0.50 $\mu$ slip resistance. Third, they should withstand at least 50.0 N/mm tearing strength. And finally, they should have upwards of 3.0 kg/cm splitting resistance.

  • PDF

Crack and Cutting Resistance Properties of Natural Rubber(NR) Compounds with Silica/Carbon Black Dual Phase Filler (Silica/Carbon Black이 충전된 NR 가황물의 내Crack 및 내Cutting 특성)

  • Son, Woo-Jung;Cho, Ur-Ryung;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.86-98
    • /
    • 2002
  • The application of silica/carbon black dual phase fillers to natural rubber(NR) compound was investigated. When the amounts of filler content were restricted to 60phr, the optimum ratio of dual phase fillers were 25phr/35phr of silica/carbon black. It was found that these new fillers give better overall performance in comparison with carbon black in tear strength, crack resistance, and cutting resistance. Also the thermal degradation resistance of NR vulcanizates which were filled with dual phase fillers was better than that of the carbon black. Dual phase fillers filled NR vulcanizates showed better viscoelastic properties, like tan${\delta}$, for the wet skid resistance and rolling resistance of motor vehicle tires.

Effects of Fillers on Fatigue Crack Growth Rate of Ethylene Propylene Diene Monomer (충전제가 EPDM의 피로균열 성장속도에 미치는 영향)

  • Hong, Chang-Kook;Jung, Jae-Yeon;Cho, Dong-Lyun;Kaang, Shin-Young
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.270-275
    • /
    • 2008
  • Crack growth characteristics of elastomeric materials are an important factor determining the strength and durability. In this study, the fatigue crack growth characteristic of filled EPDM compounds with different reinforcing fillers, such as silica and carbon black, was investigated using a newly designed tester. Frequency and test temperature had significant effects on the fatigue crack growth. The crack growth rate decreased with increasing frequency and the rate increased with increasing temperature. A power law relationship between the tearing energy and crack growth was observed for filled EPDM compounds. The crack growth rate reduced with increasing filler contents. Silica filled EPDM showed a better fatigue resistance than carbon black filled EPDM. The crack growth rate of silica filled EPDM decreased up to 30 phr and increased again at 50 phr. The formation of microductile type pits was observed on the fatigue-failure surface of unfilled EPDM, and relatively coarse surface with randomly distributed tear lines was observed on the failure surface of silica filled EPDM.

Crack Growth and Wear Properties of Silica-reinforced Styrene-butadiene Rubber Compounds: Effect of Processing Oil Type (실리카충전 스티렌-부타디엔 고무컴파운드의 균열성장 및 마모특성: 공정오일 종류의 영향)

  • Kang, S.L.;Lee, J.Y.;Go, J.Y.;Go, Y.H.;Kaang, S.;Nah, C.
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.401-407
    • /
    • 2009
  • Commercial grades of solution styrene-butadiene rubbers extended with high aromatic oils having high polycyclic aromatic compounds (PCA) and low PCA oils were used to study the effect of the processing oil particularly on the crack propagation resistance and frictional wear resistance of the vulcanizates. The aromatic oil based vulcanizates exhibited superior fracture behavior over the low PCA oil extended vulcanizates based on tensile and trouser tear tests. Compounds with aromatic oil showed superior crack propagation resistance compared with those containing low PCA oil, especially at the lower ranges of tearing energy. In terms of frictional wear resistance, the aromatic oil extended compounds showed superior performance particularly in the lower frictional work ($W_f$) range but in the higher $W_f$ range the low PCA oil extended vulcanizates performed better.

Performance Assessment of PVA Geotextile/HDPE Geomembrane Composites

  • Jeon, Han-Yong;Hong, Sang-Jin;Lyoo, Won-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.37-46
    • /
    • 2005
  • PVA geotextile/HDPE geomembrane composites were made to examine the waste landfill related properties. Tensile properties, tear and bursting strengths, AOS(apparent opening size) and permittivity of PVA geotextiles were evaluated, respectively. Ultraviolet stability and chemical resistance to the leachate was evaluated also. Friction property and creep deformation were tested at various loading condition. From this, it was seen that PVA geotextile/HDPE geomembrane composites have more excellent properties than the typically used polypropylene and polyester geotextiles in waste landfill. Finally, creep deformation behaviours of PVA geotextile/HDPE geomembrane composites were more stable than polypropylene and polyester geotextiles through the reduction factor analysis.

  • PDF

Crock Resistance Properties of Natural Rubber Compounds for Tank Track Pads (군용 전투차량 궤도 pads용 천연고무 배합물의 내크랙성 향상을 위한 연구)

  • Shin, Jung-Eun;Kim, Yu-Seuk;Bae, Jong-Woo;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.335-344
    • /
    • 1998
  • In this study, the tearing energy and the rate of crack propagation of natural rubber (NR) compounds were evaluated to improve the crack resistance of tank-track pads. Although the factors affecting the crack resistance properties of NR compounds are various in this experiment, the effects of filler(carbon black) and the crosslinking system were evaluated. When the amount of accelerator is equal to that of sulfur( eg. efficient vulcanization), the compound shows the most excellent in the aged mechanical properties and the crack resistance properties. The ISAF carbon black(CB) having a good reinforcing characteristics was better than any other CB grades in physical properties and processablity. The optimum content was 50phr.

  • PDF