• Title/Summary/Keyword: 인양 러그

Search Result 4, Processing Time 0.018 seconds

The Structural Strength Assesment of Lifting Lug (리프팅 러그의 구조 강도 평가)

  • Heo, Nam-Hak;Lee, Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.42-50
    • /
    • 2014
  • Lifting lugs are frequently used in shipyard to transportate and turn over blocks. As the shipbuilding technology develops, blocks has become bigger and bigger, and block management technology takes a more important role in shipbuilding to enhance the productivity. For the sake of economic as well as safe design of lug structure, more rigorous analysis is needed. In this study in order to investigate the strength characteristics of two type of lug, that is, D and T type lugs, non-linear strength analysis has been carried out to compare the ultimate strength characteristics of two types of lug varying in-plane and out-of-plane loading directions. Based on the present numerical analysis results, it can be drawn that T type lug is superior to D type lug from view points of ultimate strength and deformation.

Ultimate Strength Assessment and Design of T type Lifting Lug (T형 리프팅 러그의 최종강도 평가와 설계)

  • Lee, Joo-Sung;Kim, Min-Sul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.444-451
    • /
    • 2015
  • Lifting lugs are frequently used in shipyard to transport and turn over blocks of ship and offshore structures. As the shipbuilding technology develops, blocks has become bigger and bigger, and block management technology takes a more important role in shipbuilding to enhance the productivity. For the sake of economic as well as safe design of lug structure, more rational design procedure based on the rigorous structural analysis is needed. This study is concerned with the optimum design of T type lug which is frequently used in shipyard. The optimum thickness of lug's main body is to be determined based on the results of non-linear strength analysis. As far as the present results for the present T type lugs having different capacity are concerned, it seems to be necessary to review the current design procedure of lug structure. The present design procedure can be extensively used in design of various types of lug structures used in shipyard.

Strength Assessment of T-type Lifting Lugs Considering Deformation of Blocks (블록의 변형을 고려한 T형 리프팅 러그의 강도 평가)

  • Lee, Joo-Sung;Kim, Min-Sul
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.309-316
    • /
    • 2015
  • Lifting lugs are frequently used in shipyards to transport and turn over the blocks of ships and offshore structures. With the development of shipbuilding technology, blocks have increased in size, and block management technology has assumed a more important role in shipbuilding to enhance the productivity. For the sake of economics, as well as the safe design of a lug structure, a more rational design procedure based on a rigorous structural analysis is needed. This study investigated the strength characteristics of T-type lugs, considering the influence of blocks on which lugs are attached, by varying the in-plane and out-of-plane load direction. In this paper, the ultimate strength is also addressed for cases that include or do not include blocks in the strength analysis. In the present results, when there was a load acting in the normal direction to the block surface, the strength characteristics became poor, and the ultimate strength decreased. This paper ends by describing the need for further study to develop a more rational design for a lug structure.

Lifting Lug by the Change of form Using Multivariate Functions: An Optimal Design Study (다변수 함수를 이용한 형상 변화에 따른 리프팅 러그의 최적 설계에 관한 연구)

  • Choi, Kyung-Shin;Kim, Ji-Jun;Lee, Ji-Han;Chan, Gwang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we proposed an optimal design for determining the shape of a lifting lug freely by applying a multivariate function to the D-type lug, which is commonly used in shipyards. We derived the optimal aspect ratio of the lug through structural analysis and analyzed the safety and behavior of the lug aspect ratio. As a result, two types of final candidates, both lighter than the existing lug weight, were suitable for the ratio. They were found to have the greatest force at an angle of 45 degrees when a load of 100 tons was imposed. When the horizontal and vertical feature ratio of the lug was 1:3, it showed excellent results in terms of safety rates while maintaining weight reduction and functional aspects.