• Title/Summary/Keyword: 인식영역

Search Result 4,318, Processing Time 0.035 seconds

Efficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection (효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조)

  • Park, Sejin;Han, Jeong Hoon;Moon, Young Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1437-1444
    • /
    • 2020
  • With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method.

Emotion Recognition of User using 2D Face Image in the Mobile Robot (이동로봇에서의 2D얼굴 영상을 이용한 사용자의 감정인식)

  • Lee, Dong-Hun;Seo, Sang-Uk;Go, Gwang-Eun;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.131-134
    • /
    • 2006
  • 본 논문에서는 가정용 로봇 및 서비스 로봇과 같은 이동로봇에서 사용자의 감정을 인식하는 방법중 한가지인 얼굴영상을 이용한 감정인식 방법을 제안한다. 얼굴영상인식을 위하여 얼굴의 여러 가지 특징(눈썹, 눈, 코, 입)의 움직임 및 위치를 이용하며, 이동로봇에서 움직이는 사용자를 인식하기 위한 움직임 추적 알고리즘을 구현하고, 획득된 사용자의 영상에서 얼굴영역 검출 알고리즘을 사용하여 얼굴 영역을 제외한 손과 배경 영상의 피부색은 제거한다. 검출된 얼굴영역의 거리에 따른 영상 확대 및 축소, 얼굴 각도에 따른 영상 회전변환 등의 정규화 작업을 거친 후 이동 로봇에서는 항상 고정된 크기의 얼굴 영상을 획득 할 수 있도록 한다. 또한 기존의 특징점 추출이나 히스토그램을 이용한 감정인식 방법을 혼합하여 인간의 감성 인식 시스템을 모방한 로봇에서의 감정인식을 수행한다. 본 논문에서는 이러한 다중 특징점 추출 방식을 통하여 이동로봇에서의 얼굴 영상을 이용한 사용자의 감정인식 시스템을 제안한다.

  • PDF

Recognition of Hatched-Area from Region Information of Object and Vectorized Interpretation Lines (객체의 영역 정보와 벡터화된 설명선으로부터 해칭 영역의 인식)

  • Jung, Yoon-Su;Oh, Sang-Keun;Lee, Byung-Kil;Park, Kil-Houm
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.3
    • /
    • pp.842-850
    • /
    • 1998
  • In this paper, we propose a method that recognize hatched area based on segmentation and vectorization of a machine drawing. This recogntion of hatched area is composed of three parts. First, the proposed method segments an object, arrowheads and interpretation lines from the machine drawing and vectorizes the object and interpretation lines. Second, closed-loops are labeled with the vectorized objects, and then candidates of hatched areas arc determined. Finally, by recognizing hatched lines included in hatched areas, recognition of the hatched areas is completed. The proposed method is more useful in extracting and recognizing the hatched areas.

  • PDF

SVM Based Facial Expression Recognition for Expression Control of an Avatar in Real Time (실시간 아바타 표정 제어를 위한 SVM 기반 실시간 얼굴표정 인식)

  • Shin, Ki-Han;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1057-1062
    • /
    • 2007
  • 얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.

  • PDF

Vehicle Tracking for Forward Vehicle Detection (전방차량 인식을 위한 차량 추적 방법)

  • Jeong, Sung-Hwan;Kwon, Dong-Jin;Song, Hyok;Park, Sang-Hyun;Lee, Chul-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.486-487
    • /
    • 2012
  • 본 논문에서는 차량 내에 설치된 카메라를 이용하여 전방차량을 인식하는 FCW(Forward Collision Warning)시스템에서 주행 중인 전방 차량을 추적하는 알고리즘을 제안한다. 전방 차량의 후보 영역을 검출하기 위해 Haar-Adaboost를 이용하였으며 검색된 차량 후보 영역 내의 에지 정보를 이용하여 차량 후보 영역을 필터링하였다. 필터링된 차량 영역은 영역기반과 Kalman 예측치를 이용하여 차량을 추적하는 방법으로 차량 검색기가 차량 영역을 검색하지 못하는 경우 Kalman 예측치를 통해 차량 후보 영역을 예측하고 예측된 차량 영역을 검증함으로써 효율적인 전방 차량 인식이 가능하였다. 본 제안 방법을 실험한 결과 이전 프레임에서 추적되던 차량 후보 영역이 현재 프레임에서 Haar-Adaboost가 차량 후보 영역을 검색하지 못하는 경우에 영역기반과 Kalman 예측치를 통하여 현재 프레임에서 전방차량을 연속적으로 추적하는 것을 확인하였다. 본 제안 방법은 영상을 이용한 FCW 시스템에 사용될 수 있을것으로 사료된다.

Nucleus Recognition of Uterine Cervical Pap-Smears using Kapur Method and Fuzzy Reasoning Rule (Kapur 방법과 퍼지 추론 규칙을 이용한 자궁 경부진 핵 인식)

  • Kang, Kyoung-Min;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.241-247
    • /
    • 2007
  • 자궁 경부 세포진 영상의 핵 추출을 위해서는 영상의 배경과 핵 그리고 세포질 영역의 구분이 중요하다. 또한 정상 세포핵과 암종 세포핵의 구분 및 인식을 위해서는 세포핵들의 형태학적 특징을 이용한 분류 기준을 세워야한다. 본 논문에서는 자궁 경부 세포진 영상에서 세포핵의 후보 영역과 핵을 추출하기 위해 현미경 400배율 확대 사진을 획득하는 과정에서 훼손된 컬러 영상을 복원하기 위한 방법으로 Lighting Compensation을 적용하여 영상을 보정한다. 그리고 배경 영역과 세포핵 영역을 구분하기 위해 영상의 R,G,B 영역의 히스토그램의 분포를 이용하여 배경을 제거한다. 배경이 제거된 영상을 그레이 영상으로 변환 한 후, 히스토그램 명암도의 값을 이용하여 세포핵 영역과 세포질을 분류하여 세포핵 영역을 추출한다. 그리고 Kapur 방법을 적용하여 세포핵 영역의 엔트로피 누적확률을 구한 후, 영상을 이진화 한다. Kapur 방법이 적용된 이진화 영상에서 세포핵 영역의 중심과 주위 화소를 비교하는 $3\times3$ 마스크를 적용하여 영상의 미세한 잡음을 제거 한 후, 8방향 윤곽선 추적 알고리즘을 적용하여 최종적으로 세포핵 영역을 추출한다. 추출된 세포핵의 영역을 분류 및 인식하는 과정으로 세포의 외각의 방향성 정보, 핵의 크기, 그리고 면적 비율의 특징을 이용하여 퍼지 소속 함수를 설계한 후, 소속 함수의 소속도를 구하고 퍼지 추론 규칙을 적용하여 자궁 경부 세포진 영상에서 정상 세포핵 및 암종 세포핵을 인식한다.

  • PDF

Effective Hand-Pose Recognition using Multi-Class SVM (다중 클래스 SVM을 이용한 효과적인 손 형태 인식)

  • Byeon, Jae-Hee;Nam, Yun-Young;Choi, Yoo-Joo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.501-504
    • /
    • 2007
  • 본 논문은 다중 클래스 SVM을 이용하여 손 형태를 효과적으로 인식할 수 있는 방법을 제시한다. 컴퓨터의 상호작용 연구가 활발해짐에 따라 컴퓨터가 인간의 행동을 얼마나 정확히 인식할 수 있느냐에 대한 연구는 끊임없이 이루어지고 있다. 본 연구에서는 실시간으로 입력되는 손영상에 대하여 색상(Hue)과 채도(Saturation)를 이용한 컬러모델을 기반으로 조명의 영향을 줄이며 손의 영역을 추출하고, 특히, 팔영역을 포함한 손영역이 촬영된 영상에서 손목 이후 부분을 제외한 손 영역만을 추출하도록 하였다. 손 형태를 인식하기 위하여 손 영역으로부터 손의 특징을 18 개의 특징값으로 표현하였고, 이를 통해 학습된 다중 클래스 SVM을 이용하여 손 형태를 인식하였다.

  • PDF

Facial Expression Algorithm For Risk Situation Recognition (얼굴 표정인식을 이용한 위험상황 인지)

  • Kwak, Nae-jong;Song, Teuk-Seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.197-200
    • /
    • 2014
  • This paper proposes an algorithm for risk situation recognition using facial expression. The proposed method recognitions the surprise and fear expression among human's various emotional expression for recognizing risk situation. The proposed method firstly extracts the facial region from input, detects eye region and lip region from the extracted face. And then, the method applies Uniform LBP to each region, discriminates facial expression, and recognizes risk situation. The proposed method is evaluated for Cohn-Kanade database image. The proposed method produces good results of facial expression and discriminates risk situation well.

  • PDF

The Pupil Boundary and design of Neural Network structure for Recognition Rate improvement (인식률 향상을 위한 동공경계 및 신경망 구조 설계)

  • Kang, Kyung-A;Kang, Myung-A;Jung, Chae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.583-586
    • /
    • 2003
  • 보안이 점점 큰 의미를 가지는 요즘, 생체정보를 개인 신분 확인수단으로 이용하려는 연구가 많이 이루어지고 있다 생체정보를 이용한 분야로는 얼굴 인식, 지문 인식, 정맥 인식, 홍채 인식 등이 있는데 그 중에서도 홍채는 패턴의 불변성과 개인의 정보로 이용될 수 있을 정도로 다양한 패턴 형태를 이루고 있다. 이러한 홍채를 이용하여 신분을 인식하기 위해서는 불필요한 영역은 배제하고 인식을 위한 특징만을 가지고 있는 영역을 정확히 찾는 것이 중요하다고 하겠다. 또한 인식 시간의 단축을 위해서 특징 데이터의 크기를 줄이기 위한 방법도 고려되어야 한다. 이 두 가지 문제를 해결하기 위하여 본 논문에서는 홍채의 특징이 가장 많이 분포되어 있는 영역을 찾기 위한 전처리 기법과 인식을 위한 신경망에서 인식시간을 단축하면서 인식률을 높일 수 있는 최적의 신경망 구조를 찾아내는 방법을 제안한다.

  • PDF

Traffic Sign Recognition Using Color Information and Neural Network with Multi-layer Perceptron (컬러정보와 다층퍼셉트론 신경망을 이용한 교통표지판 인식)

  • Bang, Gul-Won;Kang, Dea-Yook;Kim, Byung-Ki;Cho, Wan-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.305-308
    • /
    • 2007
  • 본 논문은 교통표지판을 자동으로 인식하는 방법에 관한 연구로 기존의 교통표지판 인식시스템에서는 인식하는데 걸리는 시간이 길고 잡음환경에서 인식률이 저하되며 변경된 교통표지판은 인식하지 못하는 문제점이 있다. 본 논문에서는 이와 같은 문제점을 해결하기위해 컬러정보를 이용하여 교통표지판 영역을 추출하고 추출된 이미지를 인식하는데 다층퍼셉트론 신경망 알고리즘을 적용하여 교통표지판 인식시스템을 제안한다. 제안된 방법은 교통표지판의 컬러를 분석하여 영상에서 교통표지판 영역을 추출한다. 영역을 추출하는 방법은 RGB 컬러 공간으로부터 YUV, YIQ, CMYK 컬러 공간이 가지는 특성을 이용한다. 형태처리는 교통표지판의 기하학적 특성을 이용하여 군집화한다. 교통표지판 인식은 학습이 가능한 다층퍼셉트론의 오류역전파알고리즘을 적용하여 인식한다. 다층퍼셉트론 신경망 알고리즘은 패턴인식 분야에서 우수한 성능이 입증 되었다.