• 제목/요약/키워드: 인식된 유사함

검색결과 1,767건 처리시간 0.024초

경로 구성 유사도를 이용한 비트맵 인덱싱 기반 XML 문서 인식 기법 (An Identifying Method of XML Document based on Bitmap Indexing using Path Construction Similarity)

  • 이재민;황병연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (하)
    • /
    • pp.1515-1518
    • /
    • 2003
  • XML의 대표적인 특징은 기존의 다른 컨텐츠와는 달리 문서의 구조를 기술할 수 있다는 것이다. 구조적 정보는 활용 방법에 파라 XML문서의 다양한 처리에 있어 성능을 향상시키는 핵심적인 요소가 될 수 있다. 그러나 XML 태그의 자기 서술적인 특성에서 비롯되는 구조적 표현의 차이는 오히려 문서의 식별을 어렵게 하는 원인이 된다. 본 논문에서는 기존의 비트맵 인덱스(Bitmap Index)를 이용한 XML 문서 검색 시스템이 다양한 구조적 유사성을 판별할 수 없는 단점을 보완 가능하도록 경로 중심의 유사 문서 인식 기법을 제안한다. 이 기법은 '경로 구성 유사도'와 '유사 경로 테이블'을 통해 기존의 비트맵 인덱스가 갖는 유사 경로를 인식하지 못하는 단점을 해결하고 검색의 유연성을 부여함으로써 보다 양질의 검색 결과를 도출할 수 있다. 또 이것은 기존 시스템의 Bit-wise 연산에 완전히 이식됨으로써 비트맵 인덱스의 장점인 빠른 성능을 그대로 유지할 수 있게 된다.

  • PDF

HM-Net을 이용한 한국어 유사음소 단위의 재 정의와 평가 (Definition and Evaluation of Korean Phone-Like Units using Hidden Markov Network)

  • 임영춘;오세진;정호열;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.183-186
    • /
    • 2002
  • 최근 음성인식의 인식 단위로서 문맥의존 음향 모델이 널리 사용되고 있다. 이는 음소의 음향학적 특징, 즉 선행 및 후행음소에 의한 중심 음소의 변이음 모델이 문맥독립 모델보다 좀 더 정확하게 모델링 될 수 있기 때문이다. 하지만 강건한 문맥의존 음향 모델을 작성하기 위해서는 모델 파라미터의 병합(tying)과 미지의 문맥(unseen context)의 처리를 위한 좀더 정교한 해결 방법이 필요하다. 따라서 본 논문에서는 이점을 고려하여 음향학적 특징과 언어학적 특징을 결합하여 상태 분할을 수행할 수 있도록 SSS(Successive State Splitting) 알고리즘의 문맥 방향 상태 분할에 음소결정트리를 접목한 HM-Net(Hidden Markov Network) 구조 결정법을 도입하였다. 또한 HM-Net은 연속적인 상태 분할에 의해 한국어에서 많이 발생하는 변이음들을 효과적으로 모델링 할 수 있다는 점을 고려하여 본 연구실에서 기존에 사용하던 48 유사음소 단위에서 문맥의존 음향 모델 작성에 불필요한 변이음을 제거하여 39 유사음소 단위를 재 정의하였다. 도입한 방법과 새로 정의한 유사음소 단위의 유효성을 확인하기 위해 고립 단어, 4연속 숫자음, 연속 음성인식에 대해 인식 실험을 수행한 결과, 모든 실험에서 재 정의한 39 유사음소 단위가 문맥종속형 HM-Net 음향모델을 이용한 한국어 음성인식에 효과적임을 확인할 수 있었다. 특히 연속 음성인식 실험의 경우, 기존의 48 유사음소 단위보다 평균 $15.08\%$의 인식률 향상이 있었다.

  • PDF

RBF 기반 유사도 단계 융합 다중 생체 인식에서의 품질 활용 방안 연구 (A study of using quality for Radial Basis Function based score-level fusion in multimodal biometrics)

  • 최현석;신미영
    • 전자공학회논문지CI
    • /
    • 제45권5호
    • /
    • pp.192-200
    • /
    • 2008
  • 다중 생체 인식은 둘 이상의 생체 정보를 획득하여 이를 기반으로 개인 인증 및 신원을 확인하는 방법으로, 패턴 분류 알고리즘을 이용한 RBF 기반 유사도 단계 융합 다중 생체 인식은 입력된 생체 정보와 데이터베이스 내의 유사도를 나타내는 매칭 값을 각 단일 생체 인식 시스템으로부터 제공받아 이를 이용하여 특징 벡터를 구성하고, 특징 공간상에서 사용자와 위조자를 구분해주는 최적의 판정 경계를 탐색하여 인식을 수행하는 방법이다. 이러한 패턴 분류 알고리즘의 경우 특징 벡터를 구성하는 각 매칭값이 동일한 신뢰도를 가지고 있다는 가정 하에 고정된 판정 경계를 구성하고 분류를 수행하게 된다. 한편, 생체 인식 시스템의 인식 결과는 입력되는 생체 정보의 품질에 영향을 받을 수 있음이 기존의 연구에서 보고되고 있는데, 이는 일반적인 RBF 기반 유사도 단계 융합 다중 생체 인식 시스템을 구성하고 있는 단일 생체 인식 시스템 중 하나의 시스템에 저품질의 생체 정보가 입력되어 신뢰할 수 없는 매칭값을 출력한 경우에는 이를 기반으로 구성된 특징 벡터의 판정이 오분류 되거나 그 결과의 신뢰도가 감소될 수 있는 문제가 있다. 이에 대한 대안으로 본 논문에서는 각 단일 생체 인식 시스템에 입력되는 생체 정보의 품질을 활용하여 RBF 기반 유사도 단계 융합 다중 생체 인식 시스템에서 품질에 따라 유동적인 판정 경계를 구성하여 특징 벡터를 구성하는 각 매칭값이 판정에 미치는 영향을 조절하고자 하였다. 이를 통해 각 생체 정보가 그 품질에 따라 판정에 미치는 영향이 달리 적용될 수 있도록 하였으며, 그 결과 단일 생체 인식과 일반적인 RBF 기반 유사도 단계 융합 다중 생체 인식에 비해 보다 개선된 인식 결과와 신뢰도를 얻을 수 있었다.

효과적인 정합과정 알고리즘의 제시 및 영상 인식에의 적용 (Presentation of Efficient Matching Algorithm and its Applications to Image Recognition)

  • 최세하;이주신
    • 한국음향학회지
    • /
    • 제17권1호
    • /
    • pp.31-38
    • /
    • 1998
  • 본 논문에서는 애매성을 고려한 이론을 적용하여 유사도를 측정한 후 퍼지 관계 행 렬을 생성하여 인식을 행하는 방법을 제안하고자 한다. 인식 시스템은 모델과 입력 영상의 특징값을 정합하여 행하게 되는데 이때 얼마나 유사한가를 계산하는 유사도 측정은 대단히 중요한 작업중의 하나가 된다. 이를 위해 톨이론과 퍼지이론의 일치도 연산을 이용하여 유 사도를 측정하며, 퍼지 관계 행렬을 생성하여 정합을 행하고자 한다. 제안한 알고리즘에 대 해 3차원 물체와 얼굴 영상을 대상으로 실험을 수행하였으며 이를 통해 본 논문의 유용성을 입증하고자 한다.

  • PDF

Dynamic Time Warping 기반의 특징 강조형 제스처 인식 모델 (Feature-Strengthened Gesture Recognition Model based on Dynamic Time Warping)

  • 권혁태;이석균
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권3호
    • /
    • pp.143-150
    • /
    • 2015
  • 스마트 디바이스가 보편화되면서 이에 내장된 가속도 센서를 사용한 제스처의 인식에 관한 연구가 주목받고 있다. 최근 가속도 센서 데이터 시컨스를 통한 제스처 인식에 Dynamic Time Warping(DTW) 기법이 사용되는데, 본 논문에서는 DTW 사용 시 제스처의 인식률을 높이기 위한 특징 강조형 제스처 인식(FsGr) 모델을 제안한다. FsGr 모델은 잘못 인식될 가능성이 높은 유사 제스처들의 집합에 대해 특징이 강조되는 데이터 시컨스의 부분들을 정의하고 이들에 대해 추가적인 DTW를 실행하여 인식률을 높인다. FsGr 모델의 훈련 과정에서는 유사 제스처들의 집합들을 정의하고 유사 제스처들의 특징들을 분석한다. 인식 과정에서는 DTW를 사용한 1차 인식 시도의 결과 제스처가 유사 제스처 집합에 속한 경우, 특징 분석 결과를 기반으로 한 추가적인 인식을 시도하여 인식률을 높인다. 알파베트 소문자에 대한 인식 실험을 통해 FsGr 모델의 성능 평가 결과를 보인다.

양방향 LSTM-RNNs-CRF를 이용한 한국어 개체명 인식 (Bidirectional LSTM-RNNs-CRF for Named Entity Recognition in Korean)

  • 신유현;이상구
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.340-341
    • /
    • 2016
  • 개체명 인식은 질의 응답, 정보 검색, 기계 번역 등 다양한 분야에서 유용하게 사용되고 있는 기술이다. 개체명 인식의 경우 인식의 대상인 개체명이 대부분 새롭게 등장하거나 기존에 존재하는 단어와 중의적 의미를 갖는 고유한 단어라는 문제점이 있다. 본 논문에서는 한국어 개체명 인식에서 미등록어 및 중의성 문제를 해결하기 위한 딥 러닝 모델을 제안한다. 제안하는 모델은 형태소 및 자음/모음을 이용하여 새롭게 등장하는 단어에 대한 기존 단어와의 형태적 유사성을 고려한다. 또한 임베딩 및 양방향 LSTM-RNNs-CRF 모델을 이용하여, 각 입력 값의 문맥에 따른 의미적 유사성, 문법적 유사성을 고려한다. 제안하는 딥 러닝 모델을 사용하여, F1 점수 85.71의 결과를 얻었다.

  • PDF

동작 유사도와 적응 추이를 이용한 한국 수화 인식에서의 사용자에 대한 적응 (Incremental User Adaptation in Korean Sign Language Recognition Using Motion Similarity and Prediction from Adaptation History)

  • 정성훈;박광현;변증남
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.386-392
    • /
    • 2007
  • 최근 들어 손 제스처를 인간-기계 인터페이스에 활용하는 연구가 많아지고 있다. 그 중에서 수화 인식은 청각장애인과 일반인 사이의 원활한 의사 소통을 하게 해 주는 인터페이스로서 중요성이 날로 더해가고 있다. 하지만 기존의 수화 인식 연구는 사용자 개개인의 수화 동작의 차이를 고려하지 않고 다수 사용자를 위한 모델을 사용하기 때문에 사용자에 따라 인식률이 낮아지게 된다. 이러한 점을 보완하기 위해 본 논문에서는 개개인의 수화 동작 특성을 반영하여 시스템이 사용자에게 적응해 가는 과정을 다루고자 한다. 특히 점진적인 사용자 적응에 있어서 가장 문제가 되는 것은 어떻게 비관측된 상태(unobserved state)의 파라미터를 수정할 것인가 하는 것이다. 이를 위해서 본 논문에서는 동작 유사도와 적응 추이에 의한 추정을 통해 비관측된 상태의 모델 파라미터를 수정한다. 실제 청각 장애인들로부터 획득한 데이터베이스를 사용하여 제안한 방법이 기존 방법에 비해 더욱 빠르게 사용자의 특성을 시스템에 반영하고 인식률을 향상시킨다는 것을 실험을 통해 보인다.

  • PDF

양방향 LSTM-RNNs-CRF를 이용한 한국어 개체명 인식 (Bidirectional LSTM-RNNs-CRF for Named Entity Recognition in Korean)

  • 신유현;이상구
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.340-341
    • /
    • 2016
  • 개체명 인식은 질의 응답, 정보 검색, 기계 번역 등 다양한 분야에서 유용하게 사용되고 있는 기술이다. 개체명 인식의 경우 인식의 대상인 개체명이 대부분 새롭게 등장하거나 기존에 존재하는 단어와 중의적 의미를 갖는 고유한 단어라는 문제점이 있다. 본 논문에서는 한국어 개체명 인식에서 미등록어 및 중의성 문제를 해결하기 위한 딥 러닝 모델을 제안한다. 제안하는 모델은 형태소 및 자음/모음을 이용하여 새롭게 등장하는 단어에 대한 기존 단어와의 형태적 유사성을 고려한다. 또한 임베딩 및 양방향 LSTM-RNNs-CRF 모델을 이용하여, 각 입력 값의 문맥에 따른 의미적 유사성, 문법적 유사성을 고려한다. 제안하는 딥 러닝 모델을 사용하여, F1 점수 85.71의 결과를 얻었다.

  • PDF

어휘 인식 시스템의 인식률 향상을 위한 어휘 유사율 처리 지원 (Vocabulary Likelihood rate Process support for Recognition rate Improvement of Vocabulary Recognition System)

  • 김규호;오상엽
    • 디지털융복합연구
    • /
    • 제10권11호
    • /
    • pp.359-363
    • /
    • 2012
  • 어휘 인식 모델에서는 정확하지 않은 어휘로 부터 특징을 추출하기 때문에 어휘가 실제 어휘와 유사한 어휘로 인식되거나 인식이 되지 않는 현상이 나타난다. 이를 위해 본 논문에서는 효율적인 형상 형성을 지원하는 시스템을 모델링하고 구현하였으며, 형상 형성 정보를 효율적으로 처리하고 어휘 유사율 관리를 최적화하기 위해 데이터베이스 검색에서 facet 방법을 응용하였다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 95.31%, 어휘 독립 인식률은 97.38%의 인식률을 나타내었다.

음소 기반의 유사율 알고리즘을 이용한 Home Network 환경에서의 음성 인식 (Voice Recognition using a Phoneme based Similarity Algorithm in Home Networks)

  • 이창섭;유재봉;박준석;양수호;김유섭;박찬영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.767-770
    • /
    • 2005
  • 네트워크상에서 전달되는 음성데이터는 전달되는 과정에서 잡음 등의 외부 요인으로 인하여 데이터에 손실이 생기는 문제가 발생한다. 이렇게 전달된 음성데이터가 음성 인식기를 통과하면 바로 음성 인식기를 통과했을 때 보다 인식률이 낮아진다. 본 연구에서는 홈 네트워크를 제어하는데 있어서 음성 인식률을 향상시키기 위해서 음성 데이터를 입력받아, 이를 음소단위 기반의 유사율 알고리즘을 적용시켜 이미 구축된 홈 네트워크 용어 관련 사전에 등록된 단어와의 유사성을 검토하여 추출된 결과로 홈 네트워크를 제어하는 방안을 제안한다. 음소단위 기반의 유사율 알고리즘과 다중발화를 이용했을 때 Threshold 값이 85% 일 경우 사전에 구축된 단어와 매칭된 인식률은 100%였으며, 사전에 없는 단어의 오인식률은 2%로 감소되었다.

  • PDF