• Title/Summary/Keyword: 인벌류트 기어펌프

Search Result 2, Processing Time 0.018 seconds

The effect of eccentricity between gear and housing in involute gear pump (인벌류트 기어펌프의 기어 편심에 따른 유동특성)

  • Kim, Sung-Hoon;Son, Hye-Min;Lee, Jae-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.631-637
    • /
    • 2013
  • The characteristics of involute gear pump with eccentric gap between gear tip and housing have been studied in terms of volumetric flow rate and/or flow efficiency. The analysis has been done with FLUENT/R-13 employing with k-e model for the turbulent flow under the given conditions of rotational velocity, gap distance and outlet pressure. The effect of parameters continues to be shown for the eccentric gear as same as for the concentric gear such that the volumetric flow rate (volumetric efficiency) increases as the increases of rotational velocity and decrease of gap distance and of outlet pressure. In the meantime, the shape of pressure build-up appears to be exponentially increase as gap distance decreases at upstream position. The pressure is rapidly developing in the upstream and remains almost constant thereafter in the downstream of circumferential flow path. This typical characteristics becomes more profound as eccentricity increases. The pump performance for the eccentric gear pump with minimum gap distance shows better than its concentric counterpart. However, it shows not for the concentric pump with minimum gap distance. Therefore, the gap reduction due to eccentricity may be positive for pump performance.

Characteristics of Two Dimensional Flow in an Involute Gear Pump (인벌류트 기어펌프의 2차원 유동특성)

  • Kim, S.H.;Son, H.M.;Lee, J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.36-41
    • /
    • 2011
  • Analysis of two-dimensional flow in an involute gear pump has been done by using FLUENT. Analysis extended to the turbulent flow includes the mass flow rate with functions of pressure difference between inlet and outlet, rotational velocities of involute gear, and clearances between tip of gear and housing. In general mass flow rate decreases with decreasing rotational velocity, and with increasing clearance and pressure difference. The flow rate efficiency of gear pump, which is defined with the theoretical flow rate, has been presented in terms of the above parameters.