• Title/Summary/Keyword: 인발비

Search Result 179, Processing Time 0.025 seconds

Evaluation of Characteristics of Ground Anchor Using Large Scale Laboratory Test (실규모 실험을 이용한 그라운드 앵커의 거동 특성 평가)

  • Sangrae Lee;Seunghwan Seol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.19-24
    • /
    • 2023
  • Ground anchor has been widely used specially for maintaining stability on reinforced cut slope in expressway. While the durability of the ground anchors should be ensured over the service life. However, the long-term loss of tensile force has occurred in most of field-installed anchors. Main causes are not clearly identified and very few studies have been made for analyzing long-term behavior of ground anchor in slopes. In this study, full-scale model tests and long-term measurements were made to obtain the load-displacement data and identified the causes of the long-term behaviors of ground anchor. As a result, the bond strength decreases exponentially with increasing water-binder ratio. Especially, groundwater is the most influencing factor to the bond strength. In the long-term behavior, the load decreases sharply until the initial settlement stabilized, and thereafter the tension force decreases constantly.

An Essay of the Reinforcing Effect of BNNT and CNT: A Perspective on Interfacial Properties (BNNT와 CNT의 강화효과에 대한 복합재 계면물성 관점의 고찰)

  • Seunghwa Yang
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.155-161
    • /
    • 2024
  • Boron nitride nanotubes and carbon nanotubes are the most representative one-dimensional nanostructures, and have received great attention as reinforcement for multifunctional composites for their excellent physical properties. The two nanotubes have similar excellent mechanical stiffness, strength, and heat conduction properties. Therefore, the reinforcing effect of these two nanotubes is greatly influenced by the properties of their interface with the polymer matrix. In this paper, recent comparative studies on the reinforcing effect of boron nitride nanotubes and carbon nanotubes through experimental pull-out test and in-silico simulation are summarized. In addition, the conflicting aspect of the two different nanotubes with structural defects in their side wall is discussed on the viscoelastic damping performance of nanocomposites.

Anchorage mechanism of inflatable steel pipe rockbolt depending on rock stiffness (팽창형 강관 록볼트의 암반 강성에 따른 정착 거동 특성)

  • Kim, Kyeong-Cheol;Kim, Ho-Jong;Jung, Young-Hoon;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.249-263
    • /
    • 2017
  • The expansion behavior of inflatable steel pipe rockbolt shows geometric nonlinearity due to its ${\Omega}-shaped$ section. Previous studies on the anchoring behavior of inflatable steel pipe rockbolt were mainly performed using theoretical method. However, those studies oversimplified the actual behavior by assuming isotropic expansion of inflatable steel pipe rockbolt. In this study, the anchoring behavior of the inflatable steel pipe rockbolt were investigated by the numerical method considering the irregularity of pipe expansion and other influencing factors. The expansion of inflatable steel pipe rockbolt, the contact stress distribution and the change of the average contact stress and the contact area during installation were analyzed. The contact stresses were developed differently depending on the constitutive behavior of rocks. Small contact stresses occurred in steel pipes installed in elasto-plastic rock compared to steel pipes installed in elastic rock. Also, the anchoring behaviors of the inflatable steel pipe rockbolt were different according to the stiffness of the rock. The steel pipe was completely unfolded in the case of the stiffness smaller than 0.5 GPa, but it was not fully unfolded in the case of the stiffness larger than 0.5 GPa for the given analysis condition. When the steel pipe is completely unfolded, the contact stress increases as the rock stiffness increases. However, the contact stress decreases as the rock stiffness increases when the steel pipe is not fully expanded.

Bond Strength Properties of CFRP Rebar in Concrete According to the Concrete Strength (콘크리트 강도에 따른 CFRP 보강근의 부착강도 특성)

  • Kim, Ho-Jin;Kim, Ju-Sung;Kim, Young-Jin;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.569-577
    • /
    • 2021
  • CFRP(Carbon Fiber Reinforced Plastic) can maintain the same strength even if the diameter is reduced by about one - third, and the weight is about one - twentieth of that of the deformed reinforcing bars that have been used in the construction industry. In particular, it is resistant to corrosion, which is the weakest part of reinf orcing bars, and there is no concern that it will deteriorate over time, It is light and durable, so transportation costs are low and it is convenient for high-rise buildings. This paper experimentally clarifies the adhesive properties of CFRP and clarifies its behavior. That is, bond strength test was conducted with the directness of CFRP and the strength of concrete as experimental variables, and the bond mechanism was clarified experimentally. Furthermore, based on the experimental results, we constructed the bond stress-slip-strain relationship of CFRP compared to the existing deformed reinforcing bars.

Performance Estimation of Hexagonal Rockfall Protection Net by Numerical Analysis (수치해석을 이용한 육각 낙석방지망의 성능 평가)

  • Oh, Sewook;Park, Soobeom;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.53-59
    • /
    • 2014
  • It has been generally recognized that the conventional rockfall protection nets have several problems to actual field application in the aspect of shock absorption, lack of pullout bearing capacities, and net damages. Because of the recognition, authors have tried to develop a new rockfall protection system consisted of shock absorption parts and hexagonal net configuration. In the previous research by the authors, the performance of the newly developed rockfall protection system has been investigated through the laboratory tests and the full-scale testing. In this study, subsequently, numerical analysis program is organized to make a confirmation of the structural stability and performance. For the correct design procedure of the hexagonal net system, it is essential to understand the various mechanical behavior of the entire system. It is also important to be reproduced the systematic characteristics of the system acquired by laboratory and full-scale testing by numerical analysis in order to carry out the numerical experiment to understand various mechanical behavior of the system. As a conclusion, the hexagonal net has better performance in mechanical and physical behavior compared with that of the rectangular net. Furthermore, due to the hexagonal net shows a good performance in aspect of the load distribution, it gives a good alternative in long-term management of the rockfall protection net.

Evaluation of Domestic and Foreign Design Standards for Soil Nailing Method by Analysis of Slope Restoration Case (비탈면 복구사례 분석을 통한 쏘일네일링 공법의 국내외 설계기준 평가)

  • You, Kwang-Ho;Kim, Tae-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.11
    • /
    • pp.11-22
    • /
    • 2019
  • Limit state design (LSD) and allowable stress design (ASD) are two main types of soil nailing design methodologies. In the LSD method, stability is determined by applying individual coefficients to ground strength, working load and etc. The ASD method calculates the safety factor and compares it with the minimum safety factor to determine the stability. The global design trend of soil nailing system is changing from the ASD method to the LSD method. The design method in Korea still adopts the ASD philosophy while others mostly do the limit state design. In this study, four soil nail design methods, 'FHWA GEC 7' in U.S. (2015), 'Clouterre' in France (1991), 'Soil nailing - best practice guidance' in U.K. (2005), 'Geoguide 7' in Hongkong (2008), and 'Design guide for slope in construction work' in Korea (2016) were applied to the evaluation of the stability and the results were analyzed comparatively in brief. It is revealed that the design method of 'the overall stability of soil nail walls' in Korea is the most conservative and next those by FHWA, Clouterre and CIRIA become more conservative in order. However, the difference of results obtained from FHWA and Clouterre is negligible. Also, this study found out that efforts to improve domestic design criterion are needed.

The Bond Characteristics of Deformed Bars in High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트와 이형철근의 부착특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Kim, Kyung Hwan;An, Tae Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.511-518
    • /
    • 2009
  • This study was intended to compare and evaluate the adhesion of High flowing Self-compacting Concrete (HSCC), Conventional Concrete (CC) and deformed bar based on concrete strength 3 (30, 50 and 70 MPa), among the factors affecting the bond strength between concrete and rebar, after fabricating the specimen by modifying the rebar position at Horizontal reinforcement at bottom position (HB), horizontal reinforcement at top position (HT) and vertical reinforcement type (V). As a result of measuring bond strength of HB/HT rebar to evaluate the factor of the rebar at top position, the bond strength of HB/HT rebar at 50 and 70 MPa was 1.3 or less and at 30 MPa, HSCC and CC appeared to be 1.2 and 2,1, respectively. Thus, when designing the anchorage length according to the concrete structure design standard (2007) at HSCC 30, 50 and 70 MPa, it would be desirable to reduce the correction factor of anchorage length of the horizontal reinforcement at top position, which is suggested for the reinforcement at top position, to less than 1.3 of CC.

Application of Ultrasonic Nano Crystal Surface Modification into Nitinol Stent Wire to Improve Mechanical Characteristics (나이티놀 스텐트 와이어의 기계적 특성 향상을 위한 초음파 나노표면 개질 처리에 대한 연구)

  • Kim, Sang-Ho;Suh, Tae-Suk;Lee, Chang-Soon;Park, In-Gyu;Cho, In-Sik;Pyoun, Young-Shik;Kim, Seong-Hyeon
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.80-87
    • /
    • 2009
  • Phase transformation, superelastic characteristics and variation of surface residual stress were studied for Nitinol shape memory alloy through application of UNSM technology, and life extension methods of stent were also studied by using elastic resilience and corrosion resistance. Nitinol wire of ${\phi}1.778$ mm showed similar surface roughness before and after UNSM treatment, but drawing traces and micro defects were all removed by UNSM treatment. It also changed the surface residual stress from tensile to compressive values, and XRD result showed less intensive austenite peak and clear martensite and additional R-phase peaks after UNSM treatment. Fatigue resistance could be greatly improved through removal of surface defects and rearrangement of surface residual stress from tensile to compressive state, and development of surface modification system to improve not only bio-compatability but also resistance to corrosion and wear will make it possible to develop vascular stent which can be used for circulating system diseases which run first cause of death of recent Koreans.

  • PDF

An Evaluation of Solid Removal Efficiency in Coagulation System for Treating Combined Sewer Overflows by Return Sludge (CSOs처리를 위한 응집침전시스템에서 슬러지 반송에 의한 고형물 처리효율평가)

  • Ha, Sung-Ryong;Lee, Seung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.171-178
    • /
    • 2013
  • In this study, the sludge that occurs in the initial operation of coagulation system developed for the treatment of CSOs were returned to the flocculation reactor. The purposes of this study were to analyze the Characteristics of flocs that are generated through the recycling sludge and settling characteristics of sludge, and to evaluate the possibility that high concentrations of particulate matter in the initial inflow of CSOs could be used as an weighted coagulant additive. As a result, the concentration of treated CSOs pollutants at the beginning of the CSOs influent with a large amount of particulate matter over 20 ${\mu}m$ was low, after gradually increasing the concentrations of them. The flocs generated from the sludge return were similar in size compared to flocs generated through injection of micro sands, and settling velocity in case of return sludge injection was decreased from 55.1 cm/min to 21.5 cm/min. SVI value of the sludge accumulated at the bottom of the sedimentation tank was 72, and settled sludge volume decreased rapidly due to the consolidation of sludge to the time it takes to 10 minutes. these mean that sludge used for recycling has good settling characteristic. A condition of returned sludge which is 0.1% return of 0.3% extraction was formed in the balance of settlement and extraction. In this case, This condition was to be adequate to maintain the proper concentration such as 100~200 mg/L of TS and 50~100 mg/L of VS in the flocculation reactor. The usage of the return sludge containing particulate matters of CSOs as an weighted coagulant additive was able to secure a stable treated water quality despite the change of influent water quality dynamically. Furthermore, it can be expected to reduce the alum dosage along with the sludge production.

Studies on the Properties of Populus Grown in Korea (포플러재(材)의 재질(材質)에 관(關)한 시험(試驗))

  • Jo, Jae-Myeong;Kang, Sun-Goo;Lee, Yong-Dae;Jung, Hee-Suk;Ahn, Jung-Mo;Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.68-87
    • /
    • 1982
  • In Korea, this is the situation at moment that the total demand of timber in 1972 is more than 5 million cubic meters. On the other hand, however, the available domestic supply of timber at the same year is only about, 1 million cubic meters. A great unbalancing between demand and supply of timber has been prevailing. To solve this hard problem, it has been necessitiated to build up the forest stocks as early as possible with fast grown species such as poplar. Under circumstances, poplar plantations which have been carryed on government and private have reached to large area of 116,603 hectors from 1962 up to date. It has now be come a principal timber resources in this country, and required the basic study on various properties of wood for it's proper utilization, since it has not been made of any systematic study on the properties of Populus grown in Korea. In order to investigate the properties such as anatomical, physical and mechanical properties of nine different species (P. euramericana Guiner I-214. P. euramericana Guiner I-476, P. deltoides Marsh, P. nigra var. italica (Muchk) Koeme, P. alba L.,P. alba $\times$ glandulosa P. maximowiczii Henry, P. koreana Rehder, P. davidiana Dode) of poplar for their proper use and development of new ways of grading processing and quality improving, this study has been made by the Forest Research Institute.

  • PDF