DRAM 가격의 하락으로 인메모리 컴퓨팅에 대한 연구 및 개발이 다시 활발해지고 있으나 효율적인 메모리 시스템 구성을 위한 연구는 아직 부족한 실정이다. 이에 본 논문은 64 비트 멀티프로세서와 대용량의 메모리로 구성되는 인메모리 컴퓨팅 시스템을 모델링하고, 메모리 크기 및 채널 개수에 따른 시스템의 성능을 시뮬레이션 하였다. 그리고 처리된 트랜잭션의 수를 성능평가의 기준으로 하여 메모리의 크기와 채널 개수에 따른 비용을 고려한 최적의 인메모리 컴퓨팅 메모리 시스템 구조를 제안하였다.
본 논문은 퍼스널 컴퓨팅 환경의 성능 향상을 위한 인피니밴드 네트워크 기반 인메모리 스토리지 시스템의 구조를 제안한다. 성능평가를 위해 100Gbit/s을 지원하는 MCX455A-ECAT 한 쌍을 MCP1600-E02A 케이블로 직결한 x86-64 architecture의 인피니밴드 네트워크를 구성하고 Target 시스템에 iSCSI Extensions for RDMA(iSER)을 적용한 RAM disk를 생성하였다. CentOS virt-manager에서 생성한 Initiator 시스템의 Windows 가상 머신에는 Target 시스템의 RAM disk를 VirtIO 방식으로 연결한다. 이 구조는 시스템 종료 후 초기화되는 종래 RAM disk의 일반적 특성을 개선한다. 마지막으로 스토리지 성능평가를 통해 향후 출시될 PCI Express 4.0 이상의 시스템과 퍼스널 컴퓨팅 스토리지 성능 향상 측면에서 해당 구조의 적합성을 보인다.
Journal of the Korean Data and Information Science Society
/
제26권5호
/
pp.1035-1045
/
2015
최근 빅데이터 분야에서 데이터를 메모리에 적재 후 빠르게 처리하는 인메모리 컴퓨팅 기술이 새롭게 부각되고 있다. 인메모리 컴퓨팅 기술은 과거 대용량 메모리와 다중 프로세서를 탑재한 고성능서버에 적용 가능하였지만, 점차 일반 컴퓨터를 초고속 네트워크로 연결하여 분산 병렬처리가 가능한 구조로 변화하고 있다. 본 논문은 In-memory data grid (IMDG) 기술을 택시 애플리케이션에 접목하여 기존의 데이터베이스의 변경 없이 성능을 향상시키는 기법을 제안한다. IMDG 기술을 적용한 경우 기존의 데이터베이스 기반의 웹서비스에 비해 처리속도와 처리량이 평균 6~9배정도 증가하며, 또한 부하량에 따른 처리량 변화의 폭이 매우 작음을 확인 하였다.
하드웨어 트랜잭셔널 메모리(HTM)는 트랜잭션 처리를 위한 병렬 프로그래밍 패러다임을 크게 바꾸었으며, 최근 Intel에서 TSX를 제안함에 따라 HTM에 기반한 다수의 연구들이 수행되었다. 그러나 기존 연구들은 트랜잭션 처리에서 하나의 원인에 대한 충돌 예측만을 지원하며, 모든 워크로드에 대해 획일화된 TSX 환경을 제공한다. 이러한 문제점을 해결하기 위해, 본 논문에서는 멀티코어 인메모리 환경에서 트랜잭션을 처리하기 위한 효율적인 HTM 기법을 제안한다. 첫째, 제안하는 기법은 과거 트랜잭션 처리 정보를 수집한 매트릭스를 이용하여, HTM 실패시의 대비책 경로로써 STM 혹은 single lock을 선택한다. 둘째, 머신러닝 알고리즘 기반 재시도 정책을 제공함으로써, 워크로드 특성에 맞는 효율적인 트랜잭션 처리를 수행한다. 마지막으로 STAMP를 이용한 성능평가를 통해, 제안하는 기법이 기존 연구에 비해 10~20%의 성능 향상이 있음을 보인다.
근래에 들어 풍부한 지식베이스를 구축하기 위한 대용량 RDFS 추론에 대한 관심이 높아지면서 기존의 단일 머신으로는 대용량 데이터의 추론 성능을 향상시키기에 한계가 있다. 그래서 분산 환경에서 의 RDFS 추론 엔진 개발이 활발히 연구되고 있다. 하지만 기존의 분산 환경 엔진은 실시간 처리가 불가능 하며 구현이 어렵고 반복 작업에 취약하다. 본 논문에서는 이러한 문제를 극복하기 위해 병렬 그래프 구조 를 사용한 인-메모리 분산 추론 엔진 구축 방법을 제안한다. 트리플 형태의 온톨로지는 기본적으로 그래프 구조를 가지고 있으므로 그래프 구조 기반의 추론 엔진을 설계하는 것이 직관적이다. 또한 그래프 구조를 활용하는 오퍼레이터를 활용하여 RDFS 추론 규칙을 구현함으로써 기존의 데이터 관점과 달리 그래프 구조의 관점에서 설계할 수 있다. 본 논문에서 제안한 추론 엔진을 평가하기 위해 LUBM1000(1억 3천 3백만 트리플, 17.9GB), LUBM3000(4억 1천 3백만 트리플, 54.3GB)에 대해 추론 속도를 실험을 하였으며 실 험결과, 비-인메모리 분산 추론 엔진보다 약 10배 정도 빠른 추론 성능을 보였다.
아파치 스파크는 빠르고 범용성이 뛰어난 클러스터 컴퓨팅 패키지로, 복구 가능한 분산 데이터셋이라는 새로운 추상화를 통해 데이터를 인메모리에 유지하면서도 결함 감내성을 얻을 수 있는 방법을 제공한다. 이러한 추상화는 하드디스크에 직접 데이터를 읽고 쓰는 방식으로 결함 감내성을 제공하는 기존의 대표적인 대용량 데이터 분석 기술인 맵 리듀스 프레임워크에 비해 상당한 속도 향상을 거두었다. 특히 로지스틱 회귀 분석이나 K-평균 군집화와 같은 반복적인 기계 학습 알고리즘이나 사용자가 실시간으로 데이터에 관한 질의를 하는 대화형 자료 분석에서 스파크는 매우 효율적인 성능을 보인다. 뿐만 아니라, 높은 범용성을 바탕으로 하여 기계 학습, 스트리밍 자료 처리, SQL, 그래프 자료 처리와 같은 다양한 고수준 라이브러리를 제공한다. 이 논문에서는 스파크의 개념과 프로그래밍 모형에 대해 소개하고, 이를 통해 몇 가지 통계 분석 알고리즘을 구현하는 방법에 대해 소개한다. 아울러, 스파크에서 제공하는 기계 학습 라이브러리인 MLlib과 R 언어 인터페이스인 SparkR에 대해 다룬다.
본 논문은 산업 현장과 민간에서 실시간으로 수집되는 에너지 빅데이터를 수용하는 빅데이터 시스템을 제안한다. 구축된 빅데이터 시스템은 하둡(Hadoop) 기반이며, 빅데이터 처리에 있어 인메모리(in-memory) 분산처리 컴퓨팅을 지원하는 스파크(Spark) 프레임워크가 동시에 적용되었다. 본문에서는 지역난방에 사용되는 열에너지 형태의 빅데이터에 초점을 두어, 입출력되는 에너지의 특성을 고려하며 실시간 수집되는 빅데이터를 적재, 관리, 처리 및 분석하는 방법을 다룬다. 이 때, 외부에서 유입되는 빅데이터는 시스템 내부에 설계된 관계형 데이터베이스 스키마에 따라 저장하고 관리되며, 저장된 빅데이터는 설정된 목적에 따라 처리하고 분석된다. 제안된 빅데이터 시스템과 더불어 지역난방과 관련한 복수의 실증현장으로부터 실시간으로 수집되는 열에너지 빅데이터에 대해 시스템이 활용된 사례를 기술한다.
가상화는 클라우드 컴퓨팅의 핵심 기술로 물리적 서버에 다수의 가상머신을 운영하여 서버 자원에 대한 활용도를 극대화하고, 관리의 편리성과 보안성을 향상시키는 것을 목표로 한다. 그러나 가상화는 물리적인 자원을 공유하기 때문에 가상머신의 성능이 저하되는 문제점을 가지고 있다. 본 연구에서는 가상머신의 대수에 따라서 발생하는 입출력 부하를 검증하고, 성능 저하의 원인을 해결하기 위해 KVM 하이퍼바이저의 블록 처리 과정을 분석하였다. 또한, 가상화 환경의 입출력 문제점을 보완하기 위한 QBic(QEMU/K-VM Based In-Memory Cache)을 구현하였다. QBic은 하이퍼바이저의 블록 입출력 과정을 모니터링하여 사용빈도가 높은 데이터를 캐시에 저장한다. 이후 캐시를 통해 해당하는 데이터를 빠르게 접근할 수 있으며, 스토리지의 접근 횟수를 줄여 하드웨어의 부하를 낮출 수 있다. 마지막으로 성능 측정을 통해 그 결과를 기술한다.
트위터는 사용자들에게 정보를 받거나 교환하는 채널로써의 역할이 활발히 이루어지고 있고 새로운 사건이 발생했을 때 빠르게 반응하기 때문에 지진이나 홍수, 자살 등의 새로운 사건을 탐지하는 센서역할로 활용할 수 있다. 그리고 사건을 탐지하기 위해서 우선적으로 관련된 트윗 추출이 필수적이다. 하지만 관련된 트윗을 찾기 위해 관련 키워드를 포함한 트윗을 추출하기 때문에 해당 키워드가 없지만 의미적으로 사건과 관련이 있는 트윗은 찾지 못하는 문제점이 있다. 또한 기존의 연구들은 디스크에 저장된 데이터에 대한 분석이 주를 이루고 있어 원하는 결과를 얻기 위해서는 데이터를 수집하여 저장하고 분석에 이르기까지 오랜 시간이 소모된다. 이러한 문제점을 해결하기 위해 본 연구에서는 실시간 이슈 탐지를 위한 일반-급상승 단어 사전 생성 및 매칭 기법을 제안한다. 데이터 스트림 인메모리 기반으로 일반-급상승 단어 사전을 생성 및 관리하기 때문에 새로운 사건을 빠르게 학습하고 대응할 수 있다. 또한 분석을 원하는 주제의 일반 사전과 급상승 사전을 동시에 관리하기 때문에 기존의 방법으로 찾지 못하는 트윗을 검출해 낼 수 있다. 본 연구를 통해 빠른 정보와 대응이 필요한 분야에 즉시적으로 활용할 수 있다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.