• Title/Summary/Keyword: 인듀서(inducer)

Search Result 72, Processing Time 0.019 seconds

Cryogenic Performance Test of a Turbopump Inducer (터보펌프 인듀서에 대한 극저온 성능시험)

  • Kim, Jin-Sun;Kim, Jin-Han;Hong, Soon-Sam
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • A test facility was developed where an inducer for a liquid rocket engine turbopump can be tested using liquid nitrogen as a working fluid. At the facility, a hydrodynamic performance test and a cavitation performance test for an oxidizer turbopump were carried out. Head-flow relation at liquid nitrogen test was similar to the case at water test. However, cavitation performance at the liquid nitrogen was superior to the case at water test, which results from the thermodynamic effect of cavitation.

Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump (산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구)

  • Jeon, Seong-Min;Kim, Jin-han;Yang, Soo-Seok;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.25-32
    • /
    • 2002
  • Structural and dynamic analyses of inducer and impeller for an oxidizer turbopump are peformed to investigate the safety level of strength and vibration at a design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three-dimensional Finite Element Method (FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances are sufficient enough for safe operation within the requited life cycle.

Cryogenic Performance Test of a Turbopump Inducer (터보펌프 인듀서에 대한 극저온 성능시험)

  • Hong Soon-Sam;Kim Jin-Sun;Kim Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.93-99
    • /
    • 2006
  • A test facility was developed where an inducer for a liquid rocket engine turbopump can be tested using liquid nitrogen as a working fluid. At the facility, a hydrodynamic performance test and a cavitation performance test for an oxidizer turbopump were carried out. Head-flow relation at liquid nitrogen test was similar to the case at water test. However, cavitation performance at the liquid nitrogen was superior to the case at water test, which results from the thermodynamic effect of cavitation.

  • PDF

Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump (산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구)

  • Jeon, Seong Min;Kim, Jinhan;Yang, Soo-Seok;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.271-278
    • /
    • 2001
  • Structural and dynamic analyses of inducer and impeller for a oxidizer turbopump are peformed to investigate the safety level of strength and vibration at design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three dimensional finite element method(FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances m sufficient enough to be operated safely within the required life cycle.

  • PDF

Numerical Study on the Hydrodynamic Performance Prediction of Turbopump Inducers (터보펌프 인듀서의 수치해석을 통한 성능예측)

  • Choi, Chang-Ho;Lee, Gee-Soo;Kim, Jin-Han;Yang, Soo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.625-630
    • /
    • 2001
  • The inducers in liquid-rocket engines are to increase the inlet pressure of the pump to avoid any malfunction due to cavitation. Inducers are typically designed to be operated with some amount of cavitation for the compactness of the turbopump system. Also, inducers are designed to produce low headrise to prevent the decrease of the overall pump efficiency due to the low efficiency of inducers. In the present paper, a computational study on the hydrodynamic behavior of the inducer for the rocket-engine turbopump are presented including the effect of the mass flow rate under the constant rotational speed. As the mass flow rate is decreased, the inducer showed better performance with strong back flows which may have deleterious effects upon the anti-cavitation ability. But the adopted inducer showed very low headrise with high volume flow rates, which may be caused by the small passage area near the trailing edge. The modified version of the present inducer is proposed and numerically evaluated, which in turn showed better results.

  • PDF

산화제 펌프 회전부의 정적 구조해석

  • Yoon, Jong-Hoon;Choi, Chang-Ho;Jang, Young-Soon;Yi, Yeong-Moo
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.72-80
    • /
    • 2004
  • LOX pump is one of the sub-assemblies constructing turbopump unit. In the current study, static structural analysis on such rotating parts as impeller and inducer has been carried out. Three major factors which can affect the structural stability of the rotating parts of LOX pump, are temperature, pressure, and centrifugal force. The effect of each factor was preliminarily investigated, then the analysis under the consideration of the combined loading conditions has been carried out. The major factor that affects the structural stability was proved to be temperature. The analyses of the combined cases showed that the designed impeller and inducer had reasonable safety margins, which means that the impeller and the inducer will be stable in static structural strength. Although there was no problem in the structural strength of the impeller and the inducer, a model analysis should be followed in order to verify the interference between the rotating part and the inner surface of casing.

  • PDF

Characteristics and prediction of the cavitation inception in a turbopump inducer (터보펌프 인듀서에서 캐비테이션 시작점의 특성 및 예측에 관한 연구)

  • Kang, Byung Yun;Kim, Dae-Jin;Choi, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1077-1079
    • /
    • 2017
  • The cavitation in the turbopump inducer progresses from the inception to the critical point, and finally develops to a breakdown which sharply declined in head. In this paper, we evaluated characteristics and predicted empirical equations about the cavitation inception of a turbopump inducer. The empirical equation of the cavitation inception for the elliptical plate was relatively well predicted to the turbopump inducer. However, in case of the marine propeller, it showed a big difference due to Reynolds number under the operating point.

  • PDF

Characteristics and Predictions of the Cavitation Inception in a Turbopump Inducer (터보펌프 인듀서에서 캐비테이션 시작점의 특성 및 예측에 관한 연구)

  • Kang, Byung Yun;Kim, Dae-Jin;Choi, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • The cavitation of a turbopump inducer develops from the inception to a critical point, and encounters breakdown finally. In this study, we evaluated the characteristics and predictions of cavitation inception for the turbopump inducer using empirical equations. The empirical equation for the elliptical plate predicted the generation of cavitation inception of the turbopump inducer relatively well. However, in case of the marine propeller, it showed a considerable difference owing to the Reynolds number of the operating point. The cavitation inception occurred earlier as the number of blades increased. However, the solidity had no major impact on the cavitation inception because the cavitation occurred locally at the tip of the leading edge.

터보펌프 인듀서의 유동해석

  • Choi, Chang-Ho;Hong, Soon-Sam;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.25-32
    • /
    • 2003
  • In the present paper, a computational study on the hydrodynamic behavior of the inducer are presented including the effect of the mass flow rate. The adopted inducer showed very low head rise with high volume flow rates, which may be caused by the small passage area near the trailing edge. The static pressure distributions at the shroud surface are compared with experimental results showing very good agreements. The overall performance of the inducer such as, efficiency, head rise is also compared with experiments. The computational results are generally in good agreements with experimental ones near the design point, but at the high flow rate, the two results shows discrepancy.

  • PDF

Meanline Performance Analysis of a Fuel Pump for a Turbopump System (터보펌프용 연료펌프의 평균유선 성능해석)

  • Yoon, Eui-Soo;Choi, Bum-Seog;Park, Moo-Ryong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.250-257
    • /
    • 2001
  • Low NPSH and high pressure pumps are widely used for turbopump systems, which have an inducer and operate at high rotating speeds In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions and at design or off-design points. The method was applied for the performance prediction of a fuel pump, which had been developed by Hyundai Mobis in collaboration with KeRC for a liquid rocket engine. The engine uses liquid methane and liquid oxygen as working fluids and rotates at 50,000 rpm KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed (10,000 ${\~}$ 15,000 rpm). Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

  • PDF