• Title/Summary/Keyword: 인과추론

Search Result 145, Processing Time 0.034 seconds

Fuzzy Cognitive Map-Based A, pp.oach to Causal Knowledge Base Construction and Bi-Directional Inference Method -A, pp.ications to Stock Market Analysis- (퍼지인식도에 기초한 인과관계 지식베이스 구축과 양방향 추론방식에 관한 연구 -주식시장 분석에의 적용을 중심으로-)

  • 이건창;주석진;김현수
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.1-22
    • /
    • 1995
  • 본 연구에서 퍼지인식도(Fuzzy Cognitive Map) 개념을 기초로 하여 (1) 특정 문제영역에 대한 전문가의 인과관계 지식(causal knowledge)을 추출하는 알고리즘을 제시하고, (2) 이 알고리즘에 기초하여 작성된 해당 문제영역에 대한 여러 전문가들의 인과관계 지식을 계층별로 분해하여, (3) 해당 계층간의 양방향 추론이 가능한 추론메카니즘을 제시하고자 한다. 특정 문제영역에 있어서의 인과관계 지식이란 해당 문제를 구성하는 여러 개념간에 존재하는 인과관계를 표현한 지식을 의미한다. 이러한 인과관계 지식은 기존의 IF-THEN 형태의 규칙과는 달리 행렬형태로 표현되기 때문에 수학적인 연산이 가능하다. 특정 문제영역에 대한 전문가의 인과관계 지식을 추출하는 알고리즘은 집합연산에 의거하여 개발되었으며, 특히 상반된 의견을 보이는 전문가들의 의견을 통합하여 하나의 통합된 인과관계 지식베이스를 구축하는데 유용하다. 그러나, 주어진 문제가 복잡하여 다양한 개념들이 수반되면, 자연히 인과관계 지식베이스의 규모도 커지게 되므로 이를 다루는데 비효율성이 개재되기 마련이다. 따라서 이러한 비효율성을 해소하기 위하여 주어진 문제를 여러계측(Hierarchy)으로 분해하여, 해당 계층별로 인과관계 지식베이스를 구축하고 각 계층별 인과관계 지식베이스를 연결하여 추론하는 메카니즘을 개발하면 효과적인 추론이 가능하다. 이러한 계층별 분해는 행렬의 분해와 같은 개념으로도 이해될 수 있다는 특징이 있어 그 연산이 간단명료하다는 장점이 있다. 이와같이 분해된 인과관계 지식베이스는 계층간의 추론메카니즘을 통하여 서로 연결된다. 이를 위하여 본 연구에서는 상향 또는 하향방식이 추론이 가능한 양방향 추론방식을 제시하여 주식시장에서의 투자분석 문제에 적용하여 그 효율성을 검증하였다.

  • PDF

Category-Based Feature Inference: Testing Causal Strength (범주기반 속성추론: 인과관계 강도의 검증)

  • JunHyoung Jo;Hyung-Chul O. Li;ShinWoo Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • This research investigated category-based feature inference when category features were connected in common cause and common effect causal networks. Previous studies that tested feature inference in causal categories showed unique inference patterns depending on causal direction, number of related features, whether the to-be-inferred feature was cause or effect, etc. However, these prior studies primarily focused on inference pattens that arise from causal relations, and few studies directly explored how the effects of causal relations vary depending on causal strength. We tested feature inference in common cause (Expt. 1) and common effect (Expt. 2) causal categories when casual strengths were either strong or weak. To this end, we had participants learn causal categories where features were causally linked and then perform feature inference task. The results showed that causal strengths as well as causal relations had important impacts on feature inference. When causal strength was strong, inference for common cause feature became weaker but that for the common effect feature became stronger. Moreover, when causal strength was strong and common cause was present, inference for the effect features became stronger, whereas the results were reversed in common effect networks. In particular, in common effect networks, casual discounting was more evident with strong causal strength. These results consistently demonstrate that participants consider not only causal relations but also causal strength in feature inference of causal categories.

Category-based Feature Inference in Causal Chain (인과적 사슬구조에서의 범주기반 속성추론)

  • Choi, InBeom;Li, Hyung-Chul O.;Kim, ShinWoo
    • Science of Emotion and Sensibility
    • /
    • v.24 no.1
    • /
    • pp.59-72
    • /
    • 2021
  • Concepts and categories offer the basis for inference pertaining to unobserved features. Prior research on category-based induction that used blank properties has suggested that similarity between categories and features explains feature inference (Rips, 1975; Osherson et al., 1990). However, it was shown by later research that prior knowledge had a large influence on category-based inference and cases were reported where similarity effects completely disappeared. Thus, this study tested category-based feature inference when features are connected in a causal chain and proposed a feature inference model that predicts participants' inference ratings. Each participant learned a category with four features connected in a causal chain and then performed feature inference tasks for an unobserved feature in various exemplars of the category. The results revealed nonindependence, that is, the features not only linked directly to the target feature but also to those screened-off by other feature nodes and affected feature inference (a violation of the causal Markov condition). Feature inference model of causal model theory (Sloman, 2005) explained nonindependence by predicting the effects of directly linked features and indirectly related features. Indirect features equally affected participants' inference regardless of causal distance, and the model predicted smaller effects regarding causally distant features.

A Study on Validating Causal Reasoning Ability Test for Children (아동용 인과추론능력검사 개발 예비 연구)

  • Shin, Jongho;Lee, Hyeon-Ju;Kim, Jeong-Ha;Hwang, hyeyoung;Gwon, Hui-Gyeong;Sim, Jeong-A
    • (The) Korean Journal of Educational Psychology
    • /
    • v.22 no.2
    • /
    • pp.367-384
    • /
    • 2008
  • The purpose of this study was to develop picture testing instrument for measuring children's causal reasoning ability on events that can occur in daily life. The measurement instrument contains three domain of human development; haman behavior domain, human psychology domain, and natural/physical domain. Through this study, researchers designed a concept model based on theoretical framework and prior studies and investigated the reliability and validity of the measurement instrument which was developed in accordance with the concept model. For the empirical validation research, a pretest was conducted to 336 elementary school students in grade 2 to 4 in Seoul. Considering reliability and validity of the developed measurement instrument and factor loadings, researchers sorted out 18 questions. And then 18 question test and KICE Critical Thinking Ability Test was conducted to 509 elementary school students in grade 1 to 4 in Seoul. According to the result of the tests, the researchers sorted out final 12 questions. The Cronbach's alpha, reliability of the children's causal reasoning ability test consisted of the final 12 question, was significant as .72. Also, the result of exploratory factor analysis showed that factors of this test were haman behavior domain, human psychology domain, and natural/physical domain. Moreover, the correlation between the KEDI Reasoning Ability Test(2003) scores and the scores of the test developed in the current study was significant as .55. Finally, the result of the analysis about children's grade differences, the development by discrepancy of age was significant in total points and that of each domain. The children's causal reasoning ability test developed by this study can be useful not only for the evaluation of children's thinking ability but also for screening of the handicapped children in thinking ability development.

Modeling feature inference in causal categories (인과적 범주의 속성추론 모델링)

  • Kim, ShinWoo;Li, Hyung-Chul O.
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.329-347
    • /
    • 2017
  • Early research into category-based feature inference reported various phenomena in human thinking including typicality, diversity, similarity effects, etc. Later research discovered that participants' prior knowledge has an extensive influence on these sorts of reasoning. The current research tested the effects of causal knowledge on feature inference and conducted modeling on the results. Participants performed feature inference for categories consisted of four features where the features were connected either in common cause or common effect structure. The results showed typicality effects along with violations of causal Markov condition in common cause structure and causal discounting in common effect structure. To model the results, it was assumed that participants perform feature inference based on the difference between the probabilities of an exemplar with the target feature and an exemplar without the target feature (that is, $p(E_{F(X)}{\mid}Cat)-p(E_{F({\sim}X)}{\mid}Cat)$). Exemplar probabilities were computed based on causal model theory (Rehder, 2003) and applied to inference for target features. The results showed that the model predicts not only typicality effects but also violations of causal Markov condition and causal discounting observed in participants' data.

Causal inference from nonrandomized data: key concepts and recent trends (비실험 자료로부터의 인과 추론: 핵심 개념과 최근 동향)

  • Choi, Young-Geun;Yu, Donghyeon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.173-185
    • /
    • 2019
  • Causal questions are prevalent in scientific research, for example, how effective a treatment was for preventing an infectious disease, how much a policy increased utility, or which advertisement would give the highest click rate for a given customer. Causal inference theory in statistics interprets those questions as inferring the effect of a given intervention (treatment or policy) in the data generating process. Causal inference has been used in medicine, public health, and economics; in addition, it has received recent attention as a tool for data-driven decision making processes. Many recent datasets are observational, rather than experimental, which makes the causal inference theory more complex. This review introduces key concepts and recent trends of statistical causal inference in observational studies. We first introduce the Neyman-Rubin's potential outcome framework to formularize from causal questions to average treatment effects as well as discuss popular methods to estimate treatment effects such as propensity score approaches and regression approaches. For recent trends, we briefly discuss (1) conditional (heterogeneous) treatment effects and machine learning-based approaches, (2) curse of dimensionality on the estimation of treatment effect and its remedies, and (3) Pearl's structural causal model to deal with more complex causal relationships and its connection to the Neyman-Rubin's potential outcome model.

정상적 모델에 기초한 비교분석 기법의 개발

  • Kim, Hyeon-Gyeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.497-499
    • /
    • 2005
  • 정성적 추론은 자연 세계에 대한 정성적, 직관적인 지식을 밝혀내어 코드화하는 목표를 갖고 연구되어왔다. 정성적 추론은 전자, 기계 등의 도메인에서 성공적으로 사용되어 그 실효성을 입증할 수 있었으나, 대부분의 추론은 시뮬레이션에 집중되어 왔다. 본 연구에서는 주어진 상황에서 변화가 발생했을 때, 이 변화가 어떻게 영향을 미치며 파급되는지를 예측할 수 있는 정성적 비교분석 기법을 소개하고지 한다. 주어진 상황에 대한 인과모델이 정성적 분야 모델로부터 형성되고 여기에 비교분석 추론 기법을 적용하여 변화의 연쇄적인 인과 관계를 추적하게 된다. 이러한 기법은 변화의 예측 뿐 아니라, 이런 변화를 이끌어낸 인과 관계를 설명하는 기능을 제공하게 되어, 디자인, 진단, 지능형 교육 시스템, 환경 영향평가 등에 이용되리라 기대된다.

  • PDF

Fuzzy Cognitive Map and Bayesian Belief Network for Causal Knowledge Engineering: A Comparative Study (인과관계 지식 모델링을 위한 퍼지인식도와 베이지안 신뢰 네트워크의 비교 연구)

  • Cheah, Wooi-Ping;Kim, Kyoung-Yun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Jeong-Sik
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Fuzzy Cognitive Map (FCM) and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal knowledge. Despite their extensive use in causal knowledge engineering, there is no reported work which compares their respective roles. This paper aims to fill the gap by providing a qualitative comparison of the two frameworks through a systematic analysis based on some inherent features of the frameworks. We proposed a set of comparison criteria which covers the entire process of causal knowledge engineering, including modeling, representation, and reasoning. These criteria are usability, expressiveness, reasoning capability, formality, and soundness. The results of comparison have revealed some important facts about the characteristics of FCM and BBN, which will help to determine how FCM and BBN should be used, with respect to each other, in causal knowledge engineering.

인과관계에 관한 구조추론과 강도추론의 관련성

  • 김동환
    • Proceedings of the Korean System Dynamics Society
    • /
    • 2003.02a
    • /
    • pp.57-64
    • /
    • 2003
  • 시스템 다이내믹스는 인과지도(Causal map)를 통한 시스템 이해를 그 출발점으로 한다. 특히 시스템 사고(systems thinking)는 저량-유량 흐름도를 통한 컴퓨터 시뮬레이션을 통하지 않고서 인과지도 분석만을 통한 시스템의 이해를 시도한다. 그러나 과연 인파지도만을 가지고 시스템을 동태적 변화를 이해/예측할 수 있는가에 관하여는 낙관적 전망과 부정적 전망이 혼재되어 있는 상황이다. 본 연구에서는 인과지도 구축을 통하여 시스템의 변화를 이해하는 데 있어서 어떠한 인지적 편향(bias)이 개입되는지를 탐색하고자 한다. 만일 심리적 편향이 존재한다면. 시스템 사고는 오류로부터 자유로울 수 없을 것이다. 본 연구에서는 이러한 오류의 존재를 탐색함으로써 시스템 사고의 제한정과 그 극복방안에 관하여 논의하고자 한다.(중략)

  • PDF

Causal reasoning studies with a focus on the Power Probabilistic Contrast Theory (힘 확률 대비 이론에 기반을 둔 인과 추론 연구)

  • Park, Jooyong
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.4
    • /
    • pp.541-572
    • /
    • 2016
  • Causal reasoning is actively studied not only by psychologists but, in recent years, also by cognitive scientists taking the Bayesian approach. This paper seeks to provide an overview of the recent trends in causal reasoning research with a focus on the power probabilistic contrast theory of causality, a major psychological theory on causal inference. The power probabilistic contrast theory (PPCT) assumes that a cause is a power that initiates or inhibits the result. This power is purported be understood through statistical correlation under certain conditions. The paper examines the supporting empirical evidence in the development of PPCT. Also, introduced are the theoretical dispute between the PPCT and the model based on Bayesian approach, and the current developments and implications of research on causal invariance hypothesis, which states that cause operates identically regardless of the context. Recent studies have produced experimental results that cannot be readily explained by existing empirical approach. Therefore, these results call for serious examination of the power theory of causality by researchers in neighboring fields such as philosophy, statistics, and artificial intelligence.