• Title/Summary/Keyword: 인공 지능 신경망

Search Result 597, Processing Time 0.033 seconds

Neural Network Application for Geothermal Heat Pump Electrical Load Prediction (지열 히트펌프 전기부하 예측을 위한 신경망 적용 방법)

  • Anindito, Satrio;Kang, Eun-Chul;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.42-49
    • /
    • 2012
  • 신경망방법은 공학, 경영 그리고 정보기술과 같이 다양한 분양에서 널리 사용되어지고 있다. 신경망방법은 기본적으로 예측, 제어, 식별과 같은 기능을 가지고 있는데, 본 논문에서는 신경망방법을 이용하여 C사의 모델 T의 히트펌프 전기부하를 예측하였다. 부하예측은 시스템을 더욱 효율적이고, 적절하게 만들기 위해 필요하다. 본 논문에서 사용된 히트펌프는 지열원 히트 펌프 시스템이다. 이 지열 히트 펌프의 부하는 사전에 미리 예측되어진 외기온도 및 건물 열부하에 따라 측정 학습된 전력 소비량으로 겨울에는 난방, 여름에는 냉방에 대한 전력 부하를 예측할 수 있다. 이 신경망방법은 신경망 학습 순서를 통해 부하 예측을 위해 히트펌프의 성능데이터를 필요로 한다. 이 부하 예측 인공지능망 방법으로 외기 온도별 건물 통합형 지열 히트 펌프 부하가 예측되어질 수 있다.

Development of Artificial-Intelligent Power Quality Diagnosis Algorithm using DSP (DSP를 이용한 인공지능형 전력품질 진단기법 연구)

  • Chung, Gyo-Gbum;Kwack, Sun-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-124
    • /
    • 2009
  • This paper proposes a new Artificial-Intelligent(AI) Power Quality(PQ) diagnosis algorithm using Discrete Wavelet Transform(DWT), Fast Fourier Transform(FFT), Root-Mean-Square(RMS) value. The developed algorithm is able to detect and classify the PQ problems such as the transient, the voltage sag, the voltage swell, the voltage interruption and the total harmonics distortion. The 15.36[kHz] sampling frequency is used to measure the voltages in a power system. The measured signals are used for DWT, FFT, RMS calculation. For AI diagnosis of the PQ problems, a simple multi-layered Artificial Neural Network(ANN) with the back-propagation algorithm is adopted, programmed in C++ and tested in PSIM simulation studies. Finally, the algorithm, which is installed in MP PQ+256 with TI DSP320C6713, is proved to diagnose the PQ problems efficiently.

Influence of a Game Charaeter′s Strategies On Artificial organism′s learning behavior (인공 유기체의 학습 행동이 게임 캐릭터의 전략에 미치는 영향)

  • 박사준;김성환;김기태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.295-297
    • /
    • 2002
  • 컴퓨터 게임에서의 인공지능은 규칙 기반 추론을 기반으로 한 추론 엔진을 사용하고 있다. 이 규칙 기반 주론 엔진은 비교적 간단하고 구현하기 쉽지만 규칙이 몇 가지 되지 않는다는 것과 규칙 변화가 없는 단점으로 게임 플레이어가 그 규칙들을 쉽게 알아버린다는 문제가 있다. 게임 제작자들은 이런 단점을 극복하고자 게임 플레이어끼리 경쟁을 붙이기 위해서 베틀 넷 등 네트워크 쪽으로 그 단점을 보안하려고 하고 있다. 하지만 오히려 네트워크로의 발전은 더욱 더 인간에 가까운 게임 캐릭터 인공지능을 요구하게 되었으며 규칙 기반 추론 방법으로는 이러한 요구를 충족할 수 없기 때문에 새로운 방법이 필요하게 된 것이다 이 논문에서는 그 새로운 방법에 대한 대척으로 신경망 알고리즘과 유전자 알고리즘을 사용한 인공생명 방법론으로 그 해결책을 모색하려 한다.

  • PDF

A Strategy Implementation of Game Character Using Artificial Life Simulation (인공생명 시뮬레이션을 통한 게임 캐릭터의 전략 구현)

  • 조남덕;성백균;김기태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.241-243
    • /
    • 2000
  • 컴퓨터 게임에서의 인공지능은 규칙 기반 추론을 기반으로 한 추론 엔진을 사용하고 있다. 이 규칙 기반 추론 엔진은 비교적 간단하고 구현하기 쉽지만 규칙이 몇 가지 되지 않는다는 것과 규칙 변화가 없는 단점으로 게임 플레이어가 그 규칙들을 쉽게 알아버린다는 문제가 있다. 게임 제작자들은 이런 단점을 극복하고자 게임 플러이어끼리 경쟁을 붙이기 위해서 베틀넷 등 네트워크 쪽으로 그 단점을 보안하려고 하고 있다. 하지만 오히려 네트워크론의 발전은 더욱 더 인간에 가까운 게임 캐릭터 인공지능을 요구하게 되었으며 규칙 기반 추론 방법으로는 이러한 요구를 충족할 수 없기 때문에 새로운 방법이 필요하게 된 것이다. 이 논문에서는 그 새로운 방법에 대한 대책으로 신경망 알고리즘과 유전자 알고리즘을 사용한 인공생명 방법론으로 그 해결책을 모색해려 한다.

  • PDF

A Korean menu-ordering sentence text-to-speech system using conformer-based FastSpeech2 (콘포머 기반 FastSpeech2를 이용한 한국어 음식 주문 문장 음성합성기)

  • Choi, Yerin;Jang, JaeHoo;Koo, Myoung-Wan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.359-366
    • /
    • 2022
  • In this paper, we present the Korean menu-ordering Sentence Text-to-Speech (TTS) system using conformer-based FastSpeech2. Conformer is the convolution-augmented transformer, which was originally proposed in Speech Recognition. Combining two different structures, the Conformer extracts better local and global features. It comprises two half Feed Forward module at the front and the end, sandwiching the Multi-Head Self-Attention module and Convolution module. We introduce the Conformer in Korean TTS, as we know it works well in Korean Speech Recognition. For comparison between transformer-based TTS model and Conformer-based one, we train FastSpeech2 and Conformer-based FastSpeech2. We collected a phoneme-balanced data set and used this for training our models. This corpus comprises not only general conversation, but also menu-ordering conversation consisting mainly of loanwords. This data set is the solution to the current Korean TTS model's degradation in loanwords. As a result of generating a synthesized sound using ParallelWave Gan, the Conformer-based FastSpeech2 achieved superior performance of MOS 4.04. We confirm that the model performance improved when the same structure was changed from transformer to Conformer in the Korean TTS.

A study on activation functions of Artificial Neural Network model suitable for prediction of the groundwater level in the mid-mountainous area of eastern Jeju island (제주도 동부 중산간지역 지하수위 예측에 적합한 인공신경망 모델의 활성화함수 연구)

  • Mun-Ju Shin;Jeong-Hun Kim;Su-Yeon Kang;Jeong-Han Lee;Kyung Goo Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.520-520
    • /
    • 2023
  • 제주도 동부 중산간 지역은 화산암으로 구성된 지하지질로 인해 지하수위의 변동폭이 크고 변동양상이 복잡하여 인공신경망(Artificial Neural Network, ANN) 모델 등을 활용한 지하수위의 예측이 어렵다. ANN에 적용되는 활성화함수에 따라 지하수의 예측성능은 달라질 수 있으므로 활성화함수의 비교분석 후 적절한 활성화함수의 사용이 반드시 필요하다. 본 연구에서는 5개 활성화함수(sigmoid, hyperbolic tangent(tanh), Rectified Linear Unit(ReLU), Leaky Rectified Linear Unit(Leaky ReLU), Exponential Linear Unit(ELU))를 제주도 동부 중산간지역에 위치한 2개 지하수 관정에 대해 비교분석하여 최적 활성화함수 도출을 목표로 한다. 또한 최적 활성화함수를 활용한 ANN의 적용성을 평가하기 위해 최근 널리 사용되고 있는 순환신경망 모델인 Long Short-Term Memory(LSTM) 모델과 비교분석 하였다. 그 결과, 2개 관정 중 지하수위 변동폭이 상대적으로 큰 관정은 ELU 함수, 상대적으로 작은 관정은 Leaky ReLU 함수가 지하수위 예측에 적절하였다. 예측성능이 가장 낮은 활성화함수는 sigmoid 함수로 나타나 첨두 및 최저 지하수위 예측 시 사용을 지양해야 할 것으로 판단된다. 도출된 최적 활성화함수를 사용한 ANN-ELU 모델 및 ANN-Leaky ReLU 모델을 LSTM 모델과 비교분석한 결과 대등한 지하수위 예측성능을 나타내었다. 이것은 feed-forward 방식인 ANN 모델을 사용하더라도 적절한 활성화함수를 사용하면 최신 순환신경망과 대등한 결과를 도출하여 활용 가능성이 충분히 있다는 것을 의미한다. 마지막으로 LSTM 모델은 가장 적절한 예측성능을 나타내어 다양한 인공지능 모델의 예측성능 비교를 위한 기준이 되는 참고모델로 활용 가능하다. 본 연구에서 제시한 방법은 지하수위 예측과 더불어 하천수위 예측 등 다양한 시계열예측 및 분석연구에 유용하게 사용될 수 있다.

  • PDF

Application of Neural Networks to Sensor Failure Detection, Identification, and Accommodation (신경망을 이용한 감지기의 고장발견, 확인 및 보완에 관한 연구)

  • An, Young-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.211-217
    • /
    • 1999
  • 감지기의 고장 발견, 확인, 보완은 복잡한 항공 시스템의 중요한 문제로 부각되어 왔으며, 그동안 칼만 필터를 이용한 기존 추정기술 혹은 온라인 학습 인공지능 알고리듬 등이 이 같은 문제를 해결하기 위해 제시되어 왔다. 본 연구에서는 여분의 감지기가 없는 항공제어계에 대해 온라인 학습 신경망을 이용한 감지기의 고장 발견, 확인, 그리고 보완에 관해 초점을 둔다. 이 내고장성 항공제어계는 주 신경조직망과 n개의 국소 신경조직망으로 이루어지는데, 포괄적인 감지기의 고장을 발견하는 능력을 가진다. 어떤 경우에서는 기존의 감지기 고장 발견 방법의 성능을 향상시키기 위해 수정된 감지방법이 소개되고 그 보완된 감지방법을 이용하여 기존의 방법과 성능비교가 이루어졌다.

  • PDF

Review of the Application of Artificial Intelligence in Blasting Area (발파 분야에서의 인공지능 활용 현황)

  • Kim, Minju;Ismail, L.A.;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.44-64
    • /
    • 2021
  • With the upcoming 4th industrial revolution era, the applications of artificial intelligence(AI) and big data in engineering are increasing. In the field of blasting, there have been various reported cases of the application of AI. In this paper, AI techniques, such as artificial neural network, fuzzy logic, generic algorithm, swarm intelligence, and support vector machine, which are widely applied in blasting area, are introduced, The studies about the application of AI for the prediction of ground vibration, rock fragmentation, fly rock, air overpressure, and back break are surveyed and summarized. It is for providing starting points for the discussion of active application of AI on effective and safe blasting design, enhancing blasting performance, and minimizing the environmental impact due to blasting.

Artificial Intelligence Applications to Music Composition (인공지능 기반 작곡 프로그램 현황 및 제언)

  • Lee, Sunghoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.261-266
    • /
    • 2018
  • This study aimed to provide an overview of artificial intelligence based music composition programs. The artificial intelligence-based composition program has shown remarkable growth as the development of deep neural network theory and the improvement of big data processing technology. Accordingly, artificial intelligence based composition programs for composing classical music and pop music have been proposed variously in academia and industry. But there are several limitations: devaluation in general populations, missing valuable materials, lack of relevant laws, technology-led industries exclusive to the arts, and so on. When effective measures are taken against these limitations, artificial intelligence based technology will play a significant role in fostering national competitiveness.

Artificial Intelligence Techniques for Predicting Online Peer-to-Peer(P2P) Loan Default (인공지능기법을 이용한 온라인 P2P 대출거래의 채무불이행 예측에 관한 실증연구)

  • Bae, Jae Kwon;Lee, Seung Yeon;Seo, Hee Jin
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.207-224
    • /
    • 2018
  • In this article, an empirical study was conducted by using public dataset from Lending Club Corporation, the largest online peer-to-peer (P2P) lending in the world. We explore significant predictor variables related to P2P lending default that housing situation, length of employment, average current balance, debt-to-income ratio, loan amount, loan purpose, interest rate, public records, number of finance trades, total credit/credit limit, number of delinquent accounts, number of mortgage accounts, and number of bank card accounts are significant factors to loan funded successful on Lending Club platform. We developed online P2P lending default prediction models using discriminant analysis, logistic regression, neural networks, and decision trees (i.e., CART and C5.0) in order to predict P2P loan default. To verify the feasibility and effectiveness of P2P lending default prediction models, borrower loan data and credit data used in this study. Empirical results indicated that neural networks outperforms other classifiers such as discriminant analysis, logistic regression, CART, and C5.0. Neural networks always outperforms other classifiers in P2P loan default prediction.