• 제목/요약/키워드: 인공 지능 신경망

검색결과 597건 처리시간 0.03초

동적 상태 진화 신경망에 기반한 팀 에이전트의 진화 (Evolving Team-Agent Based on Dynamic State Evolutionary Artificial Neural Networks)

  • 김향화;장동헌;김태용
    • 한국멀티미디어학회논문지
    • /
    • 제12권2호
    • /
    • pp.290-299
    • /
    • 2009
  • 진화하는 인공신경망은 인공지능분야와 게임 NPC의 지능 설계 분야에서 새롭게 각광을 받고 있다. 하지만 진화하는 인공신경 망을 이용하여 게임 NPC의 지능을 설계할 때 인공신경 망의 구조가 복잡함에 따라 진화와 평가에 필요한 연산량이 크며 또한 적절한 적합도 함수를 설계하지 못하면 지능적인 NPC를 설계할 수 없는 등의 문제점을 가지고 있다. 본 논문에서는 이러한 문제들을 해결하고자 동적 상태 진화 인공신경망을 제안한다. 동적 상태 진화 인공신경망은 전통적인 진화하는 인공신경망 알고리즘에 기반하여 진화 과정에서 신경망의 신경세포들 사이의 시냅스를 제거(disabled) 하거나 고정(fixed)시키는 방법을 통하여 진화와 평가과정에 소모되는 연산량을 줄이는 알고리즘이다. 본 논문은 Darwin Platform 을 테스트 베드로 축구게임 NPC의 지능 설계를 통하여 제안하는 방법의 유용성을 검증한다.

  • PDF

데이터와 인공신경망 능력 계산 (Calculating Data and Artificial Neural Network Capability)

  • 이덕균;박지은
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.49-57
    • /
    • 2022
  • 최근 인공지능의 다양한 활용은 기계학습의 딥 인공신경망 구조를 통해 가능해졌으며 인간과 같은 능력을 보여주고 있다. 불행하게도 딥 구조의 인공신경망은 아직 정확한 해석이 이루어지고 있지 못하고 있다. 이러한 부분은 인공지능에 대한 불안감과 거부감으로 작용하고 있다. 우리는 이러한 문제 중에서 인공신경망의 능력 부분을 해결한다. 인공신경망 구조의 크기를 계산하고, 그 인공신경망이 처리할 수 있는 데이터의 크기를 계산해 본다. 계산의 방법은 수학에서 쓰이는 군의 방법을 사용하여 데이터와 인공신경망의 크기를 군의 구조와 크기를 알 수 있는 Order를 이용하여 계산한다. 이를 통하여 인공신경망의 능력을 알 수 있으며, 인공지능에 대한 불안감을 해소할 수 있다. 수치적 실험을 통하여 데이터의 크기와 딥 인공신경망을 계산하고 이를 검증한다.

인공신경망과 사례기반추론을 활용한 옵션가격결정에 관한 연구

  • 김명섭;김광용
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.375-382
    • /
    • 1999
  • 본 연구는 데이터마이닝 기법과 전문가 지식을 활용한 옵션가격 결정모형을 제시하는데 목적이 있다. 첫째, 데이터마이닝 기법 주의 하나인 인공신경망 기법을 활용하여 변동성과 옵션가격을 추정하고, 이를 전통적인 재무이론의 결과와 비교하였다. 인공신경망으로 추정된 변동성은 기존의 모형에 비해 개선된 성과를 보였으며, 가격결정모형은 대등한 성과를 보였다. 또한 모수적 기법과 비모수적 기법의 통합을 통해 성과의 개선을 가져올 수 있음을 보였다. 둘째, 시장 참여자들의 정보를 반영하여 옵션의 이론적 가격결정모형의 성과를 개선할 수 있는 사례기반추론시스템을 제안하였다.

  • PDF

Spiking Neural Networks(SNN) 구조에서 뉴런의 개수와 학습량에 따른 학습 성능 변화 분석 (An analysis of learning performance changes in spiking neural networks(SNN))

  • 김용주;김태호
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.463-468
    • /
    • 2020
  • 인공지능 연구는 다양한 분야에 적용되며 발전하고 있다. 본 논문에서는 차세대 인공지능 연구 분야인 SNN(Spiking Neural Networks) 형태의 인공지능 구현 방식을 사용하여 신경망을 구축하고, 그 신경망에서 뉴런의 개수가 신경망의 성능에 어떠한 영향을 미치는지를 분석한다. 또한 신경망 학습량을 증가시키면서 신경망의 성능이 어떻게 바뀌는지를 분석한다. 해당 연구 결과를 통해 각 분야에서 사용되는 SNN 기반의 신경망을 최적화 할 수 있을 것이다.

인공신경망을 이용한 중소기업도산예측에 있어서의 비재무정보의 유용성 검증 (Usability Test of Non-Financial Information in Bankruptcy Prediction using Artificial Neural Network -The Case of Small and Medium-Sized Firms-)

  • 이재식;한재홍
    • 지능정보연구
    • /
    • 제1권1호
    • /
    • pp.123-134
    • /
    • 1995
  • 인공신경망을 이용한 기업도예측에 관한 연구는 일반적으로 대기업을 대상으로 수행되고 있으며, 분석자료로는주로 재무제표에서 얻어지는 재무정보를 사용하고 있다. 이들 대기업의 재무정보들은 비교적양이 풍부하고 신뢰성이 높기 때문에 인공신경망을 이용한 도산예측의 적중률이 80%∼85%의 높은 수준을 보이고 있다. 하지만, 중소기업이 재무정보는 불충분할 뿐만 아니라 신뢰성이 낮을 가능성이 높기 때문에, 중소기업의 도산예측에 있어서 재무정보만을 사용하게 되면 그 정확도가 떨어지게 된다. 본 연구에서는 인공신경망을 이용한 중소기업의 도산예측에 있어서, 재무정보를 보완할 수 있는 비재무정보의 유용성을 검증하였다. 연구결과 본 연구에서 사용한 비재무정보가 획득가능한 비재무정보중 극히 일부에 지나지 않았음에도 불고하고, 재무정보만을 사용하였을 때보다 예측력이 10%정도나 향상되었다.

  • PDF

계절성 임베딩을 고려한 STL-Attention 기반 트래픽 예측 (STL-Attention based Traffic Prediction with Seasonality Embedding)

  • 염성웅;최철웅;콜레카르 시바니 산제이;김경백
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.95-98
    • /
    • 2021
  • 최근 비정상적인 네트워크 활동 감지 및 네트워크 서비스 프로비저닝과 같은 다양한 분야에서 응용되는 네트워크 트래픽 예측 기술이 네트워크 통신 문제에 의한 트래픽의 결측 및 네트워크 유저의 불규칙한 활동에 의한 비선형 특성 때문에 발생하는 성능 저하를 극복하기 위해 딥러닝 신경망에 대한 연구가 활성화되고 있다. 이 딥러닝 신경망 중 시계열 딥러닝 신경망은 단기 네트워크 트래픽 볼륨을 예측할 때 낮은 오류율을 보인다. 하지만, 시계열 딥러닝 신경망은 기울기 소멸 및 폭발과 같은 비선형성, 다중 계절성 및 장기적 의존성 문제와 같은 한계를 보여준다. 이 논문에서는 계절성 임베딩을 고려한 주의 신경망 기반 트래픽 예측 기법을 제안한다. 제안하는 기법은 STL 분해 기법을 통해 분해된 트래픽 트랜드, 계절성, 잔차를 이용하여 일별 및 주별 계절성을 임베딩하고 이를 주의 신경망을 기반으로 향후 트래픽을 예측한다.

게임 NPC를 위한 신경망 기반의 이동 안공지능 알고리즘 (A Neural Network-based Artificial Intelligence Algorithm with Movement for the Game NPC)

  • 조인휘;최문원
    • 한국통신학회논문지
    • /
    • 제35권12A호
    • /
    • pp.1181-1187
    • /
    • 2010
  • 본 논문은 게임에서 신경망기반으로 지능캐릭터에게 학습을 통한 상황판단을 하는 이동 인공지능을 제안하였다. 신경망은 게임 규칙과 문제해결 방법을 정의한 알고리즘을 통한 입출력 값을 이용하여 지도 학습된다. 지도 학습된 지능캐릭터는 변화하는 주변 환경을 인지하여, 적절한 행동을 하게 된다. 본 논문에서는 신경망을 이용한 이동 인공지능을 점진적으로 설계하였고, 성능 실험을 위하여 간단한 게임을 구현하였다. 이 게임은 일정한 2차원 공간에 목표, 캐릭터, 장애물이 존재하고 캐릭터는 목표 지점으로 장애물을 회피하며 이동해야한다. 이동 인공지능은 실험마다 정의한 알고리즘을 통해 규칙과 몇 가지 문제해결법을 학습하여 변화하는 환경에서 목표를 완수 할 수 있으며, 정의한 알고리즘과 신경망 구조를 동일하게 설계하였다. 실험 결과, 제안한 이동 인공지능은 주변 상황을 인지하여 이동을 수행하고 목표를 완수할 수 있음을 보였다. 이동 인공지능은 복잡한 구조의 게임도 학습 알고리즘을 정의하여 학습하면 신경망은 변화한 환경에서도 적절한 결과를 보여 줄 수 있을 것이다.

DSP320C6713기반의 인공지능형 단상전력품질 진단기 개발연구 (Development of DSP Process-based Artificial-Intelligent Power Quality Equipment for Single-phase Power System)

  • 곽선근;정교범;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.66-68
    • /
    • 2008
  • 본 논문은, 전력계통 내의 순시 파형으로부터 전력품질 자동진단을 위한 인공지능형 단상전력품질 진단기를 제안한다. 진단하는 전력품질은 전압강하(Sag), 전압상승(Swell), 과도현상(Transient) 및 전고조파함유율(THD) 이다. 인공지능 구현을 위해서 인공신경망 이론을 이용하였으며, 시뮬레이션 및 TI DSP 320C6713 사용하여 하드웨어를 구현하였다. 인공신경망의 학습을 위하여, 00변전소에서 일년(2007년)동안 측정한 데이터 중에서 Sag, Swell, Transient 특성이 명확히 관측된 150주기의 파형과 정상상태의 50주기 파형으로 구성된 총 200주기의 데이터를 사용하였다. 측정된 파형을 1/60[sec.]마다 256번 샘플링하여, FFT 및 웨이블렛 변환을 시행하여 얻어진 값을 인공신경망 학습에 사용하였다. 상용프로그램 PSIM을 이용하여 인공신경망 학습을 시뮬레이션하였으며, DSP 프로세서를 이용하여 하드웨어로 구현하여 검증하였다.

  • PDF

기업부도예측을 위한 통합알고리즘

  • 배재권;김진화
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2006년도 춘계학술대회
    • /
    • pp.195-202
    • /
    • 2006
  • 본 연구에서는 보다 효과적인 기업부도예측을 위하여, 동계적 방법과 인공지능 방법을 결합한 통합모형을 제시하였다. 이를 위하여 통계적인 모형 중에서 가장 널리 활용되고 있는 다변량 판별분석, 로지스틱 회귀분석과 인공 지능적인 방법으로서 최근 널리 사용되고 있는 인공신경망, 규칙유도기법, 베이지안 망의 5가지 방법론을 통합한 Voting with Performance & Weights from ANN(WP-ANN) 통합모형을 제시하였다. 실험결과, 본 연구에서 제안한 WP-ANN 통합모형은 다변량 판별분석, 로지스탁 회귀분석, 인공신경망, 규칙유도기법, 베이지안 망 등의 단일모형과 비교한 결과 가장 예측정확성이 유수한 것으로 나타났다. 따라서 본 연구를 통해 기업부도예측에 있어서 WP-ANN 통합모형이 기존의 모형들에 비해 우수한 예측정확성을 나타냄을 알 수 있었다.

  • PDF

교사교육을 위한 딥러닝 인공신경망 교육 사례 연구 (A Training Case Study of Deep Learning Artificial Neural Networks for Teacher Educations)

  • 허경
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.385-391
    • /
    • 2021
  • 본 논문에서는 예비교사 및 현직교사를 대상으로 한 인공지능 소양교육을 위해, 딥러닝 인공신경망 교육 사례를 연구하였다. 또한, 제안한 교육 사례를 통해, 초중고 학생들이 경험할 수 있는 인공신경망 원리교육 콘텐츠를 탐색하고자 하였다. 이를 위해, 우선 2종 이미지를 인식하는 인공신경망의 동작 원리 교육 사례를 제시하였다. 그리고 인공신경망 확장 응용 교육 사례로, 3종 이미지를 인식하는 인공신경망 교육 사례를 제시하였다. 인공신경망에 인식시키고자 하는 이미지 개수에 따라 출력층의 개수를 변경하여 스프레드시트로 구현한 사례를 구분하여 설명하였다. 또한, 인공신경망 동작 결과를 체험하기 위해, 지도학습 방식의 인공신경망에 필요한 학습데이터를 직접 작성해보는 교육 내용을 제시하였다. 본 논문에서는 인공신경망의 구현과 인식 테스트 결과를 스프레드시트를 사용하여 시각적으로 나타내었다.

  • PDF