본 논문은 도로를 주행하는 차량의 지점속도에 대하여 단기간(short-term)으로 예측하는 네 가지의 모형들에 대한 개발 및 결과의 비교하고 평가했다. 사용된 기법들로는 다중회귀분석, 시계열분석(ARIMA), 인공 신경망, 칼만필터링 등이며, 모형의 구출을 위하여 다수의 독립변수 및 입력변수가 요구되는 다중회귀분석과 인공 신경망에서는 연속방정식에서 고려되는 변수들간의 단순상관계수 및 편상관계수의 계산을 통해서 입력변수가 설정이 되었으며, 시계열분석(ARIMA)과 칼만필터링 등 단일 입력 변수만을 요하는 모형에서는 바로 전 시간대와 현재시간대의간격동안 속도의 변화량을 입력변수로 설정하였다. 속도를 비롯해서 교통 데이터는 현장자료를 사용하였는데, 이는 서울의 한강 옆에 위치한 올림픽대로 중 한강대로에 위치한 검지기 3개를 통해서 천호동 방면으로 이동하는 교통류에 대해서 17시간 (00시~17시)동안 수집했다. 17시간 수집했는데 그중에 검지된 속도는 14km/h에서 98km/h까지 변하는 등, 수집된 자료에는 다양한 교통상태가 포함되어 있는데 이는 각 모형들의 정확한 예측력과 적응성을 평가하기 위함이었다. 각 모형은 예측하고자 하는 시점으로부터 1, 5, 10, 15분 후의 속도를 예측하는 것으로 총 4가지의 예측시간간격으로 각각 실험되었다. 결과는 전반적으로 신뢰성 있게 나왔으나 그중에서도 정확성면에서는 인공신경망과 칼만필터링이 우수했고 적응성면에서는 칼만필터리딩 탁월했다. 또한 1분 후의 속도를 예측하는 결과들은 모형들간에 거의 비슷한 정확도를 보여주었는데 이는 입력변수의 설정이 중요한 것임을 보여주는 것이라 판단된다. 있는 기법이다.적으로 세부적 차종분류로 접근한다.의 영향들을 고려함으로써 가로망 설계 과정에서 가로망의 상반된 역할인 이동성과 접근성의 비교가 가능한 보다 현실적인 가로망 설계 모형을 구축하고자 한다. 지금까지 소개된 가로망 설계모형들은 용량변화에 대한 설계변수의 형태에 따라 이산적 가로망 설계 모형과 연속적 가로망 설계모형으로 나뉘어지게 된다. 본 논문의 경우, 계산속도의 향상 측면에서는 연속적 가로망 설계 모형을 도입할 수 있지만, 이때 요구되는 도로용량이 이산적인 변수(차선 수)로 결정되어야만 신호제어 변수를 결정할 수 있기 때문에, 이산적 가로망 설계 모형이 사용된다. 하지만, 이산적 설계모형의 경우 조합최적화 문제이므로 정확한 최적해를 구하기 위해서는 상당한 시간이 소요되며, 경우에 따라서는 국부 최적해에 빠지게 된다. 이러한 문제를 극복하기 위해, 우선 이상적 모형의 근사화, 혹은 조합최적화문제를 위해 개발된 Simulated Annealing기법의 적용, 연속적 모형의 변수를 이산화하는 방법 등 다양한 모형들을 고려해 본 뒤, 적절한 모형을 적용할 것이다. 가로망 설계 모형에서 신호제어를 고려하기 위해서는 주어진 가로망에 대한 통행 배정과정에서 고려되는 통행시간을 링크통행시간과 교차로 지체시간을 동시에 고려해야 하는데, 이러한 문제의 해결을 위해서 최근 활발히 논의되고 있는 교차로에서의 신호제어에 대응하는 통행배정 모형을 도입하여 고려하고자 한다. 이를 위해서 지금까지 연구되어온 Global Solution Approach와 Iterative Approach를 비교, 검토한 뒤 모형에 보다 알맞은 방법을 선택한다. 차량의
Proceedings of the Optical Society of Korea Conference
/
1991.07a
/
pp.55-59
/
1991
신경회로망은 뒤뇌의 신경조직이 갖는 병렬적이며 분산적인 정보처리 능력을 흉내낸 인공적인 회로망이다. 이러한 신경회로망을 영상인식, 음성인식, 적응제어 및 최적화등에 응용할 경우 지금까지 얻지 못하였던 우수한 여러 가지 특성을 얻을수 있음을 알려짐에 따라 신경회로망을 구체적으로 구현하고자 하는 연구가 활발히 이루어지고 있다. 본 고에서는 신경소자간의 연결세기의 변조에 의한 학습 원리를 설명하고 광전기적인 그현방법에 대해서 몇 개의 예를 들어 설명하고 그 발전 가능성에 대하여 기술하였다.
Journal of the Korea Society of Computer and Information
/
v.26
no.9
/
pp.27-35
/
2021
Artificial life is used in various fields of applied science by evaluating natural life-related systems, their processes, and evolution. Research has been actively conducted to evolve physical body design and behavioral control strategies for the dynamic activities of these artificial life forms. However, since co-evolution of shapes and neural networks is difficult, artificial life with optimized movements has only one movement in one form and most do not consider the environmental conditions around it. In this paper, artificial life that co-evolve bodies and neural networks using predator-prey models have environmental adaptive movements. The predator-prey hierarchy is then extended to the top-level predator, medium predator, prey three stages to determine the stability of the simulation according to initial population density and correlate between body evolution and population dynamics.
본 논문은 복잡 적응 시스템의 분석 및 모델링을 위해, 인공생명의 기본 패러다임인 셀룰라 오토마타를 선택하여, 무정형의 구조를 가지며 투명한 자료 전파 특성을 갖는 셀룰라 신경 회로망의 설계하고 개발하는데 중점을 두었다. 우선, 신경 회로망의 불규칙한 구조를 발생학적으로 다루어 무정형의 은닉층을 생성하고, 다윈의 진화론을 적용하여 구조적 진화 및 선택을 통해 최적화된 신경 회로망을 설계하였다. 주변 셀의 상태를 감지하여 자신의 상태를 수정해나가는 방식의 셀룰라 오토마타의 투명한 신호 전파 모델로 자료 및 오차의 역전파에 적용하도록 고안하였고, 라마르크의 용불용설을 활용한 오차의역전파 학습 알고리즘을 유도하였다. 이러한 복잡 적응계의 학습 과정을 유도하여 시뮬레이션에서 그 타당성을 입증하였다. 시뮬레이션에서는 신경 회로망의 XOR 문제와 다중 입력 다중 출력 함수에 대한 근사화 문제를 풀었다.
최근 모바일 기기를 위한 카메라 관련 기술이 발전하면서 취득할 수 있는 영상의 화질 또한 크게 향상되고 있다. 그러나, 일상 생활에서 빈번히 발생하는 다양한 실내외 불규칙한 조명 조건 및 저조도 환경은 여전히 영상 화질 저하를 야기한다. 본 고에서는 이러한 문제를 해결하기 위해 최근 널리 연구되고 있는 심층신경망 기반 영상 화질 개선 연구의 최신 동향을 소개하고자 한다. 먼저, 다양한 최적화 기법을 바탕으로 영상 내 조명 성분을 추정하고, 이를 개선하는 방법들에 대해 간략히 설명한다. 또한, 영상 인식, 객체 검출 등에서 뛰어난 성능을 입증한 합성곱 신경망 구조를 기반으로 영상의 잠재적 특징을 효과적으로 검출한 후 이를 바탕으로 개선된 영상을 생성하는 방법에 대해 설명한다. 다양한 데이터셋에 대한 실험 결과를 통해 인공지능 기반 영상 화질 개선의 우수성을 보인다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.261-264
/
2021
본 논문에서는 SR(Super-Resolution)을 계산하는데 필요한 데이터를 효율적으로 분류하고 분할하여 빠르게 SR연산을 가능하게 하는 쿼드트리 기반 최적화 기법을 제안한다. 제안하는 방법은 입력 데이터로 사용하는 연기 데이터를 다운스케일링(Downscaling)하여 쿼드트리 연산 소요 시간을 감소시키며, 이때 연기의 밀도를 이진화함으로써, 다운스케일링 과정에서 밀도가 손실되는 문제를 피한다. 학습에 사용된 데이터는 COCO 2017 Dataset이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual)방식과 유사하게 이전 계층의 출력 값을 더해주며 학습한다. 결과적으로 제안하는 방법은 이전 결과 기법에 비해 약15~18배 정도의 속도향상을 얻었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09b
/
pp.35-38
/
2003
최근 컴퓨터 게임의 확산과 함께 보다 나은 가상환경 생성을 위한 기술에 대한 필요성이 증가하고 있다 다양한 환경에서 지능적으로 행동하는 인공 캐릭터의 설계를 위해 다양한 인공지능 기술이 적용되고 있다. 하지만 게임의 캐릭터 설계에 적용된 휴리스틱이나 규칙기반 시스템 등의 기존 인공지능 기술은 게임 개발자에 의존적이기 때문에 플레이어가 쉽게 캐릭터의 행동패턴을 파악하여 게임의 흥미를 저하시키는 단점이 있다 따라서 진화연산이나 신경망 등의 학습기반 인공지능 기술의 게임에의 적용이 모색되고 있다 특히 진화를 이용한 지능기술은 자연계의 복잡성과 의외성을 모방하여 최적화된 지능보다는 속임수/의외성 등의 창의적인 지능행동의 생성을 가능하게 하며 새로운 게임전략의 생성, 게임 캐릭터의 성격형성 및 다양한 행동 생성 등에 매우 유용하다. 본 논문에서는 진화기술의 게임에의 효과적인 적용을 위해 진화엔진을 설계 및 제작하고 인공지능 시뮬레이터에 적용하여 그 유용성을 확인하였다.
SMC(Sheet molding compound) composite is mainly used for forming of vehicle's body. Considering the car accident, it is essential to research the impact behavior and characteristics of materials. It is difficult to identify them because the impact process is completed in a short time. Therefore, the impact damage analysis using FE(finite element) model is required for the impact behavior. The impact damage analysis requires the parameters for the damage model of SMC composite. In this paper, ANN(artificial neural network) technique is applied to obtain the parameters for the damage model of SMC composite. The surrogate model by ANN was constructed with the result in LS-DYNA. By comparing the absorption energy in drop weight test with the result of ANN model, the optimized parameters were obtained. The acquired parameters were validated by comparing the results of the experiment, the FE model and the ANN model.
Damage caused by impact on a vehicle composed of CFRP(carbon fiber reinforced plastic) composite to reduce weight in the aerospace industries is related to the safety of passengers. Therefore, it is important to understand the damage behavior of materials that is invisible in impact situations, and research through the FEM(finite element model) is needed to simulate this. In this study, FEM suitable for predicting damage behavior was constructed for impact analysis of unidirectional laminated composite. The calibration parameters of the MAT_54 Enhanced Composite Damage material model in LS-DYNA were acquired by inverse estimation through ANN(artificial neural network) model. The reliability was verified by comparing the result of experiment with the results of the ANN model for the obtained parameter. It was confirmed that accuracy of FEM can be improved through optimization of calibration parameters.
각종 인공지능 기법들을 활용하여, 주식시장의 흐름을 예측하려는 연구가 지금까지 많은 인공지능 및 금융공학의 연구자들에 의해 시도되어 왔으며, 그 결과 다양한 인공지능 기법들이 예측 방법론으로 제시되어 왔다. 이런 가운데 서로 다른 예측모형들이 산출하는 예측결과를 종합 - 보완하는 결합기법에 관련된 연구가 90년대 후반부터 오늘날까지 꾸준하게 발표되고 있다. 본 연구 역시 유전자 알고리즘 기반의 새로 인공지능 예측모형간 결합기법을 제시하고 있다. 다만, 기존의 연구모형들이 각 개별모형 결과의 상대적 가중치에 초점을 맞추고 있었다면, 본 연구의 제안모형은 등락을 판단하는데 활용되는 임계치까지 유전자 알고리즘을 이용해 동시에 최적화하도록 설계되어 있다는 점에서 차별화된다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 지난 1998년부터 2007년까지의 KOSPI 지수 등락 예측을 위해 구축된 로지스틱 회귀모형, 인공신경망, SVM모형의 결과들을 제안모형을 이용해 결합하였다. 그 결과, 예측력 향상에 본 연구의 제안모형이 기여 할 수 있음을 확인 할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.