Proceedings of the Korea Inteligent Information System Society Conference
/
1999.10a
/
pp.375-382
/
1999
본 연구는 데이터마이닝 기법과 전문가 지식을 활용한 옵션가격 결정모형을 제시하는데 목적이 있다. 첫째, 데이터마이닝 기법 주의 하나인 인공신경망 기법을 활용하여 변동성과 옵션가격을 추정하고, 이를 전통적인 재무이론의 결과와 비교하였다. 인공신경망으로 추정된 변동성은 기존의 모형에 비해 개선된 성과를 보였으며, 가격결정모형은 대등한 성과를 보였다. 또한 모수적 기법과 비모수적 기법의 통합을 통해 성과의 개선을 가져올 수 있음을 보였다. 둘째, 시장 참여자들의 정보를 반영하여 옵션의 이론적 가격결정모형의 성과를 개선할 수 있는 사례기반추론시스템을 제안하였다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2010.10a
/
pp.108-109
/
2010
본 연구에서는 비선형예측기법으로서 그 우수성을 인정받고 있는 인공신경망모형을 사용하여 컨테이너 물동량 예측을 수행하였다. 그러나 인공신경망모형을 사용해 시계열의 예측결과를 ARIMA모형과 같이 널리 알려진 다른 전통적인 수요예측기법들과 비교 평가한 과거 연구들을 보게 되면 각기 주장하는 바와 그 결론이 상반됨을 알 수 있다. 그래서 인공신경망의 예측성과를 높이기 위한 기존의 선행연구들의 다양한 시도들을 바탕으로 국내 항만의 컨테이너물동량을 예측하고, 그를 통해 여러 모형간의 비교 검증작업을 수행하였다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.11a
/
pp.469-477
/
2000
본 연구에서는 부도예측용 인공신경망 모형의 입력노드를 선정하기 위한 방법론으로 연결강도판별분석(Link Weight Discrimination Analysis)에 의한 약체뉴론제거법(Weak-Linked Neuron Elimination)과 강체뉴론선택법 (Strong-Linked Neurons Selection)을 제안한다. 연결강도판별분석이란 적절한 학습이 끝난 인공신경망 모형에서 입력노드와 연결되는 가중치의 합에 대한 절대값인 연결강도 판별식(Link Weight Discrimination)에 의해 해당 입력노 드가 출력노드에 미치는 영향정도를 분석하는 것이다. 한편 강체연결뉴론선택법은 선처리를 통해 얻어진 학습된 인공신경망의 입력노드 가운데서 연결강도판별식이 큰 뉴론만을 본처리의 입력노드로 선정하는 것인데 비해 약체연결뉴론제거법은 연결강도판별식이 일정 값 즉, 연결강도 판별임계치(Link Weight Discrimination Cut off Value) 보다 낮은 입력노드를 제외하고 나머지 입력노드만을 본처리의 입력노드로 선정하는 것이다. 본 연구에서는 강체연결뉴론선택법과 약체연결뉴론제거법을 각각 정형적인 방법론으로 정립하고 이 방법론에 의해 부도예측용 인공신경망을 구축하여 각각의 모형을 의사결정트리에 의해 선정된 인공신경망 모형 및 선처리 과정을 거치지 않은 인공신경망 모형과 성능을 비교, 분석하여 본 연구에서 제안한 방법론의 타당성을 제시하였다.
Proceedings of the Korea Inteligent Information System Society Conference
/
1999.03a
/
pp.291-300
/
1999
본 논문은 인공신경망과 귀납적 학습방법 등의 인공지능 방법과 선물가격결정에 대한 기존 재무이론을 사용하여 일상어휘로 표현되는 파생상품 가격예측 모형을 개발하는데 있다. 모형의 개발은 1단계로 인공신경망이나 기존의 선물가격결정이론(평균보유비용모형이나 일반균형모형)을 이용하여 선물 가격을 예측한 후, 서로 비교분석하여 인공신경망 모형의 우수성을 확인하였다. 귀납적 학습방법중 CART 알고리듬을 사용하여 If-Then 규칙을 생성하였다. 특히 실용적 측면에서 선물가격의 일상어휘화를 통한 모형개발을 여러 가지 방법으로 시도하였다. 이러한 선물가격 예측모형의 유용성은 일단 If-Then 규칙으로 표현되어 전문가의 판단에 확실한 이론적인 근거를 제시할 수 있는 장점이 있으며, 특히 의사결정지원시스템으로 활용화 될 경우 매우 유용한 근거자료로 활용될 수 있다. 이러한 선물가격 예측모형은 정확성은 분석표본과 검증표본으로 나누어 검증표본에서 세가지 기본모형(평균보유비용모형, 일반균형모형, 인공신경망 모형)과 각 모형의 귀납적 학습방법 모형의 다른 3가지 어휘표현방법 3가지를 모형별로 비교 분석하였다. 분석결과 인공신경망모형은 상당한 예측력을 갖고 있는 것으로 판명되었으며, 특히 CART를 기반으로 한 일상어휘 기반의 선물가격예측 모형은 예측력이 높은 것으로 나타났다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.2B
/
pp.111-120
/
2009
A local scour around a bridge pier is known as one of important factors of bridge collapse. Two approaches are usually used in estimating a scour depth in practice. One is to use empirical formulas, and the other is to use computational methods. But the use of empirical formulas is limited to predict a scour depth under similar conditions to which the formulas were derived. Computational methods are currently too expensive to be applied to practical engineering problems. This study presented the application of artificial neural networks (ANN) to the prediction of a scour depth around a bridge pier at an equilibrium state. This study also investigated various ANN algorithms for estimating a scour depth, such as Backpropagation Network, Radial Basis Function Network, and Generalized Regression Network. Preliminary study showed that ANN models resulted in very wide range of errors in predicting a scour depth. To solve this problem this study incorporated cluster analysis into ANN. The incorporation of cluster analysis provided better estimations of scour depth up to 42% compared with other approaches.
Kim, Yong-Gu;Jin, Young-Hoon;Lee, Han-Min;Park, Sung-Chun
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.301-306
/
2006
본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저..갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 선행 유출량의 지속성을 갖는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 도입하여 예측모형의 전처리 과정으로 이용하였다. 이는 기존의 인공신경망 모형이 하나의 모형을 구성하여 유출량의 전 범위에 해당하는 자료를 예측하는 방법을 개선한 것으로 SOM에 의해 패턴이 분류된 강우-유출관계의 각 패턴별 예측모형을 통해 분류된 자료들의 예측을 수행하는 방법이다. 이와 같이 SOM을 강우-유출예측모형의 전처리과정으로 이용함으로서 기존의 인공신경망 연구에서 야기된 현상들을 해결할 수 있었고, 예측력 또한 기존의 인공신경망 모형의 결과에 비해 우수하였다.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1412-1416
/
2009
최근의 극심한 기상이변으로 인하여 발생되는 이상호우의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우를 예측하기 위해 많은 방법들이 사용되고 있으나 강우의 메커니즘은 매우 복잡하여 수문순환과정에서 가장 예측하기 힘든 요소이며, 추계학적 예측모형이나 확정론적 예측모형 모두에 있어 상당한 불확실성을 내포하고 있다. 기상예측모형 등을 이용하여 강우예측에 대한 정도를 높여가고는 있으나 많은 수문학적 모형에서 요구하는 시공간적으로 정도가 높은 강우를 예측하기에는 힘들다. 인공신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 강우사상을 과거의 자료로부터 신경망의 수학적 알고리즘을 통해 강우의 예측에 적용할 수 있을 것이다. 따라서 본 연구에서는 이러한 인공신경망의 기법 중 오류 역전파 알고리즘을 통하여 과거의 강우사상들을 입 출력 자료로 이용하여 인공신경망을 학습시켜 강우의 예측에 대한 정도를 높이도록 하였다.
Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.904-907
/
2005
본 연구에서는 강우량의 실측치인 자동기상관측소(AWS) 자료와 현재의 대기상태인 인공위성(GMS-5호) 자료를 입력자료로 하여 현재부터 3시간 선행시간까지의 면적평균강우량을 예측할 수 있도록 강우예측 신경망 모형을 개발하였으며, 2002년 8월 집중호우시 남강댐 유역에 적용하였다. 신경망 모형의 학습을 위해서 $1998\~2001$년 $6\~9$월과 2002년 6, 7월의 강우사상과 적외선 자료가 사용되었고, 학습이 종료되면 예측기간(2002년 8월 $6\~16$일)동안의 강우예측이 수행되었다. 신경망 모형의 학습단계에서는 자료들간의 비선형 상관관계를 나타내는데 적합한 역전파 알고리즘 학습방법 중 모멘텀법을 사용하였으며, 신경망 모형의 출력값은 현재부터 3시간 후까지의 면적평균강우량을 예측할 수 있도록 구성하였다. 예측된 면적평균강우량은 실제 관측된 강우량의 패턴은 잘 따르고 있었지만 첨두치를 과소평가하는 경향이 나타났다. 본 연구에서 개발된 신경망 모형은 관측된 강우자료의 품질과 패턴이 모형의 정확성에 미치는 영향이 절대적인 기존의 신경망 모형과 차별화하여, 현재의 대기상태를 나타내는 인공위성 자료를 추가함으로써 보다 정확한 강우량 예측이 가능하도록 하였다.
Proceedings of the Korea Society for Industrial Systems Conference
/
1998.10a
/
pp.665-670
/
1998
본 연구에서는 시계열자료의 ARMA 모형화를 위해 의사결정트리 분류기상에 존재하는 인공신경망의 구조를 개선하여 이들 각각의 인공신경망으로부터 도출된 결과를 Dempster's rule of combination을 이용하여 결합할 수 있는 방법론을 제시하고 있다. 인공신경망을 이용한 기존의 ARMA 모형화 방법과 비교한 결과, 본 연구에서는 제시한 방법이 주어진 ESACF 특성패턴에 대해 보다 정확하게 ARMA 모형화를 하는 것으로 나타났다.
본 논문에서는 단일 및 군말뚝의 수평변위를 예측하기 위하여 신경망 학습속도의 향상과 지역 최소점 수렴을 방지하는 Readjusting 기법을 적용한 인공신경망을 도입하였다. 이 인공신경망을 M-EBPNN 이라고 한다. M-EBPNN에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였으며, 그리고 신경망의 학습속도와 지역 최소점의 수렴성을 평가하기 위하여 오류 역전파 신경망(EBPNN)의 결과와도 비교 분석하였다. M-EBPNN의 적용성 검증을 위하여 200개의 모형실험결과들을 이용하였으며, 신경망의 구조는 EBPNN의 구조와 동일한 한 개의 입력층과 두 개의 은닉층 그리고 한 개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학습에 이용하지 않은 데이터들은 예측에 이용되었다. 그리고, 신경망의 최적학습을 위하여 적합한 은닉층의 뉴런 수와 학습률은 EBPNN에서 결정한 값들을 본 신경망에 이용하였다. 해석결과들에 의하면, 동일한 학습패턴에서의 M-EBPNN이 학습 반복횟수는 EBPNN 보다 최고 88% 감소하였으며 지역 최소점에 수렴하는 현상은 거의 나타나지 않았다. 따라서, 인공신경망 모델이 수평하중을 받는 말뚝의 수평변위 예측에 적용될 수 있는 가능성을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.