• Title/Summary/Keyword: 인공지능CCTV

Search Result 78, Processing Time 0.027 seconds

Cat Behavior Pattern Analysis and Disease Prediction System of Home CCTV Images using AI (AI를 이용한 홈CCTV 영상의 반려묘 행동 패턴 분석 및 질병 예측 시스템 연구)

  • Han, Su-yeon;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.165-167
    • /
    • 2022
  • The proportion of cat cats among companion animals has been increasing at an average annual rate of 25.4% since 2012. Cats have strong wildness compared to dogs, so they have a characteristic of hiding diseases well. Therefore, when the guardian finds out that the cat has a disease, the disease may have already worsened. Symptoms such as anorexia (eating avoidance), vomiting, diarrhea, polydipsia, and polyuria in cats are some of the symptoms that appear in cat diseases such as diabetes, hyperthyroidism, renal failure, and panleukopenia. It will be of great help in treating the cat's disease if the owner can recognize the cat's polydipsia (drinking a lot of water), polyuria (a large amount of urine), and frequent urination (urinating frequently) more quickly. In this paper, 1) Efficient version of DeepLabCut for posture prediction running on an artificial intelligence server, 2) yolov4 for object detection, and 3) LSTM are used for behavior prediction. Using artificial intelligence technology, it predicts the cat's next, polyuria and frequency of urination through the analysis of the cat's behavior pattern from the home CCTV video and the weight sensor of the water bowl. And, through analysis of cat behavior patterns, we propose an application that reports disease prediction and abnormal behavior to the guardian and delivers it to the guardian's mobile and the main server system.

  • PDF

Design and Implementation of Dangerous Situation Assessment System using YOLOv4 and Data Modeling (YOLOv4와 데이터 모델링을 활용한 위험 상황 판정 시스템의 설계 및 구현)

  • Lee, Taejun;Kim, Sohyun;Yang, Seungeui;Hwang, Chulhyun;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.488-490
    • /
    • 2022
  • Recently, interest in industrial accidents such as the Industrial Safety and Health Act and the Serious Accident Punishment Act is increasing, and the demand for safety managers for safety management of workers in research institutes and industrial fields of various fields is increasing. For worker safety management, CCTVs are being installed in factories and workplaces, and workers are monitored to enhance safety management. In this paper, we intend to design a dangerous situation assessment system by constructing data using CCTV in such a workplace and modeling it in JSON format. The data modeling was produced by referring to the data set construction guide for artificial intelligence learning and the quality management guideline of the Korea National Information Society(NIA). Through this system, we want to check what kind of risk management exists in the workplace by risk situation scenario and use it to build a more systematic system.

  • PDF

The Crowd Density Estimation Using Pedestrian Depth Information (보행자 깊이 정보를 이용한 군중 밀집도 추정)

  • Yu-Jin Roh;Sang-Min Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.705-708
    • /
    • 2023
  • 다중밀집 사고를 사전에 방지하기 위해 군중 밀집도를 정확하게 파악하는 것은 중요하다. 기존 방법 중 일부는 군중 계수를 기반으로 군중 밀집도를 추정하거나 원근 왜곡이 있는 데이터를 그대로 학습한다. 이 방식은 물체의 거리에 따라 크기가 달라지는 원근 왜곡에 큰 영향을 받는다. 본 연구는 보행자 깊이 정보를 이용한 군중 밀집도 알고리즘을 제안한다. 보행자의 깊이 정보를 계산하기 위해 편차가 적은 머리 크기를 이용한다. 머리를 탐지하기 위해 OC-Sort를 학습모델로 사용한다. 탐지된 머리의 경계박스 좌표, 실제 머리 크기, 카메라 파라미터 등을 이용하여 보행자의 깊이 정보를 추정한다. 이후 깊이 정보를 기반으로 밀도 맵을 추정한다. 제안 알고리즘은 혼잡한 환경에서 객체의 위치와 밀집도를 정확하게 분석하여 군중밀집 사고를 사전에 방지하는 지능형 CCTV시스템의 기반 기술로 활용될 수 있으며, 더불어 보안 및 교통 관리 시스템의 효율성을 향상하는 데 중요한 역할을 할 것으로 기대한다.

Implementation of Monitoring System of the Living Waste based on Artificial Intelligence and IoT (AI 및 IoT 기반의 생활 폐기물 모니터링 시스템 구현)

  • Kim, Sang-Hyun;Kang, Young-Hoon;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.302-310
    • /
    • 2020
  • In this paper, we have implemented the living waste analysis system based on IoT and AI(Artificial Intelligence), and proposed effective waste process and management method. The Jeju location have the strong point to devise a stratagem and estimate waste quantization, rather than others. Especially, we can recognized the amount variation of waste to the residence people compare to the sightseer number, and the good example a specific waste duty. Thus this paper have developed the IoT device for interconnecting the existed CCTV camera, and use the AI algorithm to analysis the waste image. By using these decision of image analysis, we can inform their deal commend and a decided information to the map of the waste cars. In order to evaluate the performance of IoT, we have experimented the electromagnetic compatibility under a national official authorization KN-32, KN61000-4-2~6, and obtained the stable experimental results. In the further experimental results, we can applicable for an data structure for precise definition command by using the simulated several waste image with artificial intelligence algorithm.

How to build an AI Safety Management Chatbot Service based on IoT Construction Health Monitoring (IoT 건축시공 건전성 모니터링 기반 AI 안전관리 챗봇서비스 구축방안)

  • Hwi Jin Kang;Sung Jo Choi;Sang Jun Han;Jae Hyun Kim;Seung Ho Lee
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.106-116
    • /
    • 2024
  • Purpose: This paper conducts IoT and CCTV-based safety monitoring to analyze accidents and potential risks occurring at construction sites, and detect and analyze risks such as falls and collisions or abnormalities and to establish a system for early warning using devices like a walkie-talkie and chatbot service. Method: A safety management service model is presented through smart construction technology case studies at the construction site and review a relevant literature analysis. Result: According to 'Construction Accident Statistics,' in 2021, there were 26,888 casualties in the construction industry, accounting for 26.3% of all reported accidents. Fatalities in construction-related accidents amounted to 417 individuals, representing 50.5% of all industrial accident-related deaths. This study suggests implementing AI chatbot services for construction site safety management utilizing IoT-based health monitoring technologies in smart construction practices. Construction sites where stakeholders such as workers participate were demonstrated by implementing an artificial intelligence chatbot system by selecting major risk areas within the workplace, such as scaffolding processes, openings, and access to hazardous machinery. Conclusion: The possibility of commercialization was confirmed by receiving more than 90 points in the satisfaction survey of participating workers regarding the empirical results of the artificial intelligence chatbot service at construction sites.

A Study on the Cognitive Judgment of Pedestrian Risk Factors Using a Second-hand Mobile Phones (중고스마트폰 업사이클링을 통한 보행위험요인 인지판단 연구)

  • Chang, IlJoon;Jeong, Jongmo;Lee, Jaeduk;Ahn, Se-young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.274-282
    • /
    • 2022
  • In order to secure pedestrians' right to walk, we have up-cycled second hand mobile phones to overcome limitations of the existing survey methods, analysis methods, and diagnosis to reduce pedestrian traffic accidents. Second hand mobile phones were up-cycled to produce mobile CCTVs and installed in areas where pedestrian deaths rate is high to secure image data sets for the period of more than 24 hours. It was analyzed by applying image visualization technology and clouding reporting technology, and more precise and accurate results were derived through modeling based on artificial intelligence learning and GIS-based diagnostic guidance. As a result, it was possible to analyze the risk factors and number of pedestrian safety, and even factors that were not known in the existing method could be derived. In addition, the traffic accident risk index was derived by converting data into one year to verify whether second hand mobile phone up-cycling mobile CCTV will be an objective tool for finding pedestrian risk factors. Up-cycling mobile CCTV of second hand mobile phones newly applied through research can be used as a new tool to find pedestrian risk factors, and it can be used as a service to protect the safety of the traffic vulnerable other than pedestrians.

Intelligent Motion Pattern Recognition Algorithm for Abnormal Behavior Detections in Unmanned Stores (무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘)

  • Young-june Choi;Ji-young Na;Jun-ho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2023
  • The recent steep increase in the minimum hourly wage has increased the burden of labor costs, and the share of unmanned stores is increasing in the aftermath of COVID-19. As a result, theft crimes targeting unmanned stores are also increasing, and the "Just Walk Out" system is introduced to prevent such thefts, and LiDAR sensors, weight sensors, etc. are used or manually checked through continuous CCTV monitoring. However, the more expensive sensors are used, the higher the initial cost of operating the store and the higher the cost in many ways, and CCTV verification is difficult for managers to monitor around the clock and is limited in use. In this paper, we would like to propose an AI image processing fusion algorithm that can solve these sensors or human-dependent parts and detect customers who perform abnormal behaviors such as theft at low costs that can be used in unmanned stores and provide cloud-based notifications. In addition, this paper verifies the accuracy of each algorithm based on behavior pattern data collected from unmanned stores through motion capture using mediapipe, object detection using YOLO, and fusion algorithm and proves the performance of the convergence algorithm through various scenario designs.

A Study on the Improvement Measures of Drowning Accident in South Korea (물놀이 안전사고 개선방안에 관한 연구)

  • Kim, Jung-Gon;Lim, Hojung;Kim, Tae-Hwan;Lee, Dae-Sung
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.153-164
    • /
    • 2019
  • Purpose: This paper aims to derive improvement measures, in terms of legal and technical aspects, which can reduce effectively the casualties caused by drowing accidents. Method: Firstly, we checked the status of drowing accident management and carried out the interview of field private safety guards. field private safety guards. In addition, surveys were conducted on safety personnel and managers. Based on survey results, we are lastly analyzed the specific problems and reviews the improvement measures from technical and legal aspects. Result: As an analytical result, it was considered that supplementary supporting tools such as CCTV, monitoring devices using IoT and artificial intelligence technologies were necessary to prevent drowning accident, and qualification with limited authority should be added to the private safety guard because of the lack of regulation. Conclusion: In order to manage water safety effectively, a comprehensive water safety management system should be established that integrates people and equipment through systemic education of security personnel, authorization of enforcement, and introduction of surveillance equipment.

Prepare a plan to utilize data collected through field demonstration of multi-sensing devices to improve urban flood monitoring (도심지 홍수 모니터링 향상을 위한 멀티센싱 기기의 현장실증을 통해 수집된 데이터의 활용방안 마련)

  • Seung Kwon Jung;Soung Jong Yoo;Su Won Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.19-19
    • /
    • 2023
  • 최근 기후변화에 의해 단기간에 많은 양의 집중호우가 발생하여 도시지역의 침수 피해가 증가하고 있다. 이에 도시지역의 홍수 피해 해결을 위해 도심지 홍수 발생 시 홍수정도 및 상황을 파악할 수 있는 장비가 개발되었으나, 실용화 단계까지는 진행이 미흡한 상황이다. 또한 기존 도시지역 홍수 현상 및 원인을 분석하기 위해 수치모형을 활용하고 있으나, 우수관망의 노후화 및 초기 강우패턴 적용에 대한 정확한 해석결과의 어려워 활용성이 낮다. 또한 홍수정도와 발생상황 인지를 위한 계측 장비의 개발 연구는 지속적으로 진행되고 있으나, 계측 장비의 높은 가격으로 전국적으로 설치 할 수 없는 상황으로 이를 대응하기 위한 별도의 방안 마련이 필요한 실정이다. 이를 위해 본 과제에서는 고성능·저비용 계측센서를 개발하여 실용화 가능성을 높이고, 전국에 산재되어있는 CCTV(교통상황, 방법용 등)의 영상을 활용한 침수상황 인지 기술 개발, 계측 데이터와 모니터링 데이터의 활용을 위한 빅데이터 개방 플랫폼을 구축하여, 상습 침수지역에 대해 실시간 감시가 가능한 계측 시스템의 정형 데이터와 CCTV 및 영상 등 모니터링 장비의 비정형 데이터의 분석 기술을 결합한 새로운 도심지 홍수 감시 기술의 개발을 목표로 한다. 이를 위해 본 연구 1차년도에 지표면 침수심 계측센서와 우수관망 월류심 계측센서를 개발하였으며, 2차년도에는개발된 계측센서의 현장실증을 통해 데이터를 수집한다. 수집된 계측센서 데이터와 비정형(CCTV 영상) 데이터의 AI학습을 통해 분석된 침수심, 침수범위, 침수면적 데이터는 도심지 홍수 정보 프로그램을 통해 표출되며, 최종적으로는 현장 상황을 쉽게 파악 가능한 3D 레이어의 형식으로 표출하고자 한다. 추후 도심지 홍수 정보 프로그램을 통해 표출되는 3D 레이어는 환경부가 추진하는 DT(Digital Twin) 연계 인공지능(AI) 홍수예보 사업과의 연계 시 도심지 홍수 지도 구축을 위한 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Danger Alert Surveillance Camera Service using AI Image Recognition technology (인공지능 이미지 인식 기술을 활용한 위험 알림 CCTV 서비스)

  • Lee, Ha-Rin;Kim, Yoo-Jin;Lee, Min-Ah;Moon, Jae-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.814-817
    • /
    • 2020
  • The number of single-person households is increasing every year, and there are also high concerns about the crime and safety of single-person households. In particular, crimes targeting women are increasing. Although home surveillance camera applications, which are mostly used by single-person households, only provide intrusion detection functions, this service utilizes AI image recognition technologies such as face recognition and object detection to provide theft, violence, stranger and intrusion detection. Users can receive security-related notifications, relieve their anxiety, and prevent crimes through this service.