• 제목/요약/키워드: 인공지능 학습

검색결과 1,632건 처리시간 0.035초

필기숫자 데이터에 대한 텐서플로우와 사이킷런의 인공지능 지도학습 방식의 성능비교 분석 (Performance Comparison Analysis of AI Supervised Learning Methods of Tensorflow and Scikit-Learn in the Writing Digit Data)

  • 조준모
    • 한국전자통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.701-706
    • /
    • 2019
  • 최근에는 인공지능의 도래로 인하여 수많은 산업과 일반적인 응용에 적용됨으로써 우리의 생활에 큰 영향을 발휘하고 있다. 이러한 분야에 다양한 기계학습의 방식들이 제공되고 있다. 기계학습의 한 종류인 지도학습은 학습의 과정 중에 특징값과 목표값을 입력으로 가진다. 지도학습에도 다양한 종류가 있으며 이들의 성능은 입력데이터인 빅데이터의 특성과 상태에 좌우된다. 따라서, 본 논문에서는 특정한 빅 데이터 세트에 대한 다수의 지도학습 방식들의 성능을 비교하기 위해 텐서플로우(Tensorflow)와 사이킷런(Scikit-Learn)에서 제공하는 대표적인 지도학습의 방식들을 이용하여 파이썬언어와 주피터 노트북 환경에서 시뮬레이션하고 분석하였다.

DSP320C6713기반의 인공지능형 단상전력품질 진단기 개발연구 (Development of DSP Process-based Artificial-Intelligent Power Quality Equipment for Single-phase Power System)

  • 곽선근;정교범;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.66-68
    • /
    • 2008
  • 본 논문은, 전력계통 내의 순시 파형으로부터 전력품질 자동진단을 위한 인공지능형 단상전력품질 진단기를 제안한다. 진단하는 전력품질은 전압강하(Sag), 전압상승(Swell), 과도현상(Transient) 및 전고조파함유율(THD) 이다. 인공지능 구현을 위해서 인공신경망 이론을 이용하였으며, 시뮬레이션 및 TI DSP 320C6713 사용하여 하드웨어를 구현하였다. 인공신경망의 학습을 위하여, 00변전소에서 일년(2007년)동안 측정한 데이터 중에서 Sag, Swell, Transient 특성이 명확히 관측된 150주기의 파형과 정상상태의 50주기 파형으로 구성된 총 200주기의 데이터를 사용하였다. 측정된 파형을 1/60[sec.]마다 256번 샘플링하여, FFT 및 웨이블렛 변환을 시행하여 얻어진 값을 인공신경망 학습에 사용하였다. 상용프로그램 PSIM을 이용하여 인공신경망 학습을 시뮬레이션하였으며, DSP 프로세서를 이용하여 하드웨어로 구현하여 검증하였다.

  • PDF

인공지능 학습을 위한 웹 컴파일러 설계 및 구현 (Design and Implementation of Web Compiler for Learning of Artificial Intelligence)

  • 박진태;김현국;문일영
    • 한국항행학회논문지
    • /
    • 제21권6호
    • /
    • pp.674-679
    • /
    • 2017
  • 4차 산업혁명과 ICT 기술의 중요성이 증가함에 따라 소프트웨어 중심 사회가 초래되었다. 기존 소프트웨어 교육은 학습 환경구성에 제한적이었으며, 초기에 많은 비용이 발생하였다. 이를 해결하기 위하여 웹 컴파일러를 활용하는 형태의 학습 방법이 개발되었다. 웹 컴파일러는 다양한 소프트웨어 언어를 지원하며, 컴파일 결과를 사용자에게 웹을 통해 보여준다. 하지만 4차 산업혁명의 핵심기술인 인공지능에 대한 웹 컴파일러는 아직 미비한 상황이다. 본 논문에서는 구글 인공지능 라이브러리인 텐서플로우 기반의 웹 컴파일러를 설계, 구현하였다. nodeJS 기반의 서버에 텐서플로우와 텐서플로우 서빙, 파이썬 주피터를 구현하고, meteorJS 기반의 웹 서버를 구축하여 인공지능 학습을 위한 시스템을 구현하였다. 소프트웨어 중심 사회에서 인공지능 학습을 위한 도구로써의 활용이 가능할 것으로 기대된다.

스마트 자율배송을 위한 클래스 분류와 객체별 학습데이터 유형 (Class Classification and Type of Learning Data by Object for Smart Autonomous Delivery)

  • 강영진;김기환;정석찬
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.37-47
    • /
    • 2022
  • 자율배송 운행 데이터는 코로나 시대의 라스트마일 배송에 대한 패러다임 변화를 주도하는 핵심이다. 국내 자율배송로봇과 해외 기술선도국가 간의 기술격차 해소를 위해서는 인공지능 학습에 사용 가능한 대규모 데이터 수집과 검증이 최우선으로 요구된다. 따라서 해외 기술선도국가에서는 인공지능 학습데이터를 누구든 사용가능한 공공데이터 형태로 오픈하여 검증과 기술발전에 기여하고 있다. 본 논문은 자율배송로봇 학습을 목적으로 326개의 객체를 수집하고 Mask r-cnn, Yolo v3 등의 인공지능 모델을 학습하고 검증하였다. 추가적으로 두 모델을 기반으로 비교하고 향후 자율배송로봇 연구에 요구되는 요소를 고찰하였다.

페이스북 딥러닝 알고리즘을 이용한 암호화폐 자동 매매 연구 (Cryptocurrency automatic trading research by using facebook deep learning algorithm)

  • 홍성혁
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.359-364
    • /
    • 2021
  • 최근 인공지능의 딥러닝과 머신러닝을 이용한 예측시스템에 관한 연구가 활발히 진행되고 있다. 인공지능의 발전으로 인해 투자관리자의 역할을 인공지능을 대신하고 있으며, 투자관리자보다 높은 수익률로 인해 점차 인공지능으로 거래를 하는 알고리즘 거래가 보편화하고 있다. 알고리즘 매매는 인간의 감정을 배제하고 조건에 따라 기계적으로 매매를 진행하기 때문에 장기적으로 접근했을 때 인간의 매매 수익률보다 높게 나온다. 인공지능의 딥러닝 기법은 과거의 시계열 데이터를 학습하고 미래를 예측하여 인간처럼 학습하게 되고, 변화하는 전략에 대응할 수 있어 활용도가 증가하고 있다. 특히 LSTM기법은 과거의 데이터 일부를 기억하거나 잊어버리는 형태로 최근의 데이터의 비중으로 높여 미래 예측에 사용하고 있다. 최근 facebook에서 개발한 인공지능 알고리즘인 fbprophet은 높은 예측 정확도를 자랑하며 주가나 암호화폐 시세 예측에 사용되고 있다. 따라서 본 연구는 fbprophet을 활용하여 실제 값과 차이를 분석하고 정확한 예측을 위한 조건들을 제시하여 암호화폐 자동매매를 하기 위한 새로운 알고리즘을 제공하여 건전한 투자 문화를 정착시키는 데 이바지하고자 한다.

인공지능과 모발의 필수 미네랄 원소 함량을 이용한 피험자 연령 예측 (Prediction of Hair Owners' Age using Hair Mineral Content and Artificial Intelligence)

  • 박준현;하병조;박상수
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.155-159
    • /
    • 2022
  • 모발의 필수 미네랄 원소 농도 데이터로 인공지능을 학습시킨 후, 피험자의 모발 미네랄 원소 농도로 나이를 예측하도록 하고 그 결과를 피험자의 실제 나이와 비교하여 연관성을 조사하였다. 전체 모발 데이터는 296개이었으며그 중 2/3를 인공지능 학습에 그리고 1/3을 피험자 데이터로 사용하였다. 25세 이하의 성장기 피험자의 실제 나이와 인공지능이 예측한 나이 사이에는 0.678 의 중상 정도의 상관관계가 있었다. 중년의 피험자 그룹에서는 연관성이 거의 없었고 노년의 피험자 그룹에서는 0.522의 약한 상관관계를 보였다. 모발의 미네랄 원소 농도 데이터를 이용한 인공지능의 유용성을 확보하기 위해서는 더 많은 수의 데이터를 제공하여 인공지능을 학습시키는 과정이 필요하다.

Development of an Artificial Intelligence Integrated Korean Language Education Program

  • Dae-Sun Kim;Eun-Hee Goo
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.67-78
    • /
    • 2024
  • 4차 산업혁명과 인공지능이 대두되면서 사회구조가 변화하고 있으며, 미래 인재 양성을 위한 인공지능 교육에 대한 세계적인 관심이 높아지고 있다. 이에 본 연구는 고등학교 1학년 학습자를 위한 인공지능 융합 국어 교과 교육 프로그램을 개발하는 것을 목적으로 하여 ADDIE 모형에 근거하여 교수·학습 프로그램을 개발하였다. 교육 프로그램의 효과를 평가하기 위해 미래 핵심역량 4C(Collaboration-협업, Communication-의사소통, Critical Thinking-비판적 사고, Creativity-창의력)과 지식정보처리 역량에 대한 사전-사후 검사를 수행하였고 총 9차시 동안 4개의 작은 프로젝트들로 수업을 구성하여 학생들에게 인공지능을 융합한 국어 교과 교육의 새로운 경험을 제공하고자 하였다. 그 결과, 프로그램 적용 학생들은 모든 영역에서 미래 핵심역량의 향상을 나타냈으며, 만족도 및 질적 분석에서도 긍정적인 결과를 도출했다. 이를 통해 본 프로그램이 고등학교 국어 교육에 인공지능을 성공적으로 융합하여 학생들의 미래 인재 양성에 기여 할 수 있는 가능성을 제시하고자 한다.

기계학습을 이용한 기록 텍스트 자동분류 사례 연구 (A Study on Automatic Classification of Record Text Using Machine Learning)

  • 김해찬솔;안대진;임진희;이해영
    • 정보관리학회지
    • /
    • 제34권4호
    • /
    • pp.321-344
    • /
    • 2017
  • 기록이나 문헌의 자동분류에 관한 연구는 오래 전부터 시작되었다. 최근에는 인공지능 기술이 발전하면서 기계학습이나 딥러닝을 접목한 연구로 발전되고 있다. 이 연구에서는 우선 문헌의 자동분류와 인공지능의 학습방식이 발전해 온 과정을 살펴보았다. 또 기계학습 중 특히 지도학습 방식의 특징과 다양한 사례를 통해 기록관리 분야에 인공지능 기술을 적용해야 할 필요성에 대해 알아보았다. 그리고 실제로 지도학습 방식으로 서울시의 결재문서를 ETRI의 엑소브레인을 통해 정부기능분류체계로 자동분류해 보았다. 이를 통해 기록을 다양한 방식의 분류체계로 자동분류하기 위한 각 과정의 고려사항을 도출하였다.

문제해결학습의 알고리즘 교육의 효과성 연구 (A Study on the Effectiveness of Algorithm Education Based on Problem-solving Learning)

  • 이영석
    • 융합정보논문지
    • /
    • 제10권8호
    • /
    • pp.173-178
    • /
    • 2020
  • 가까운 미래에 인공지능과 컴퓨터 네트워크 기술이 발전함에 따라, 인공지능과의 협업이 중요하게 될 것이다. 인공지능 시대에는 사람 간의 의사소통과 협업 능력이 인재의 중요한 요소라고 할 수 있다. 이를 위해서, 컴퓨터 과학 기반의 인공지능이 어떻게 동작하는지를 파악하는 것이 필요하다. 컴퓨터 과학 교육을 위해서는 문제 해결 학습 중심의 알고리즘 교육에 초점을 두는 것이 효율적이다. 본 연구에서는 문제 해결 학습 중심의 알고리즘 교육을 받은 대학생 28명을 대상으로 학기 초의 컴퓨팅 사고력 진단을 실시한 결과와 학기 말의 만족도 조사와 학업 성적을 비교 분석하였다. 학생들의 컴퓨팅 사고력을 진단한 결과와 문제 해결 학습, 교수법, 강의 만족도, 기타 환경 요인에서 상관관계가 나타났고, 회귀분석을 실시한 결과 문제 해결 학습이 강의 만족도와 컴퓨팅 사고력 향상에 영향을 주었음을 확인하였다. 컴퓨터 과학 교육을 위해서 문제 해결 학습 기법과 함께 학생들의 만족도를 향상하는 방법을 추구한다면 학생들의 문제 해결 능력 향상에 도움이 될 것이다.

A Study on Tower Modeling for Artificial Intelligence Training in Artifact Restoration

  • Byong-Kwon Lee;Young-Chae Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권9호
    • /
    • pp.27-34
    • /
    • 2023
  • 본 논문은 인공지능(AI)을 이용하여 통일신라 석탑인 '경주 불국사 삼층석탑'의 복원을 위해 3D 모델링 과정을 연구했다. 기존의 3D 모델링 방식은 수많은 Verts와 Face를 생성하므로, 이로 인해 AI 학습에 상당한 시간이 소요한다. 이에 따라, Verts와 Face의 수를 낮추어 더 효율적인 3D 모델링을 수행하는 방식이 필요하다. 이를 위해, 본 연구에서는 석탑의 구조를 정점 및 면의 수로 분석하고, AI 학습에 최적화된 면수를을 최소화 하도록 모델링 방법을 연구했다. 더불어, 우리나라의 석탑 복원을 위한 인공지능학습에 최적화된 모델링 방법론을 제안하고, 인공지능 학습에 필요한 DataSet 을 확보하는 데 의미가 있다.