최근에는 인공지능의 도래로 인하여 수많은 산업과 일반적인 응용에 적용됨으로써 우리의 생활에 큰 영향을 발휘하고 있다. 이러한 분야에 다양한 기계학습의 방식들이 제공되고 있다. 기계학습의 한 종류인 지도학습은 학습의 과정 중에 특징값과 목표값을 입력으로 가진다. 지도학습에도 다양한 종류가 있으며 이들의 성능은 입력데이터인 빅데이터의 특성과 상태에 좌우된다. 따라서, 본 논문에서는 특정한 빅 데이터 세트에 대한 다수의 지도학습 방식들의 성능을 비교하기 위해 텐서플로우(Tensorflow)와 사이킷런(Scikit-Learn)에서 제공하는 대표적인 지도학습의 방식들을 이용하여 파이썬언어와 주피터 노트북 환경에서 시뮬레이션하고 분석하였다.
본 논문은, 전력계통 내의 순시 파형으로부터 전력품질 자동진단을 위한 인공지능형 단상전력품질 진단기를 제안한다. 진단하는 전력품질은 전압강하(Sag), 전압상승(Swell), 과도현상(Transient) 및 전고조파함유율(THD) 이다. 인공지능 구현을 위해서 인공신경망 이론을 이용하였으며, 시뮬레이션 및 TI DSP 320C6713 사용하여 하드웨어를 구현하였다. 인공신경망의 학습을 위하여, 00변전소에서 일년(2007년)동안 측정한 데이터 중에서 Sag, Swell, Transient 특성이 명확히 관측된 150주기의 파형과 정상상태의 50주기 파형으로 구성된 총 200주기의 데이터를 사용하였다. 측정된 파형을 1/60[sec.]마다 256번 샘플링하여, FFT 및 웨이블렛 변환을 시행하여 얻어진 값을 인공신경망 학습에 사용하였다. 상용프로그램 PSIM을 이용하여 인공신경망 학습을 시뮬레이션하였으며, DSP 프로세서를 이용하여 하드웨어로 구현하여 검증하였다.
4차 산업혁명과 ICT 기술의 중요성이 증가함에 따라 소프트웨어 중심 사회가 초래되었다. 기존 소프트웨어 교육은 학습 환경구성에 제한적이었으며, 초기에 많은 비용이 발생하였다. 이를 해결하기 위하여 웹 컴파일러를 활용하는 형태의 학습 방법이 개발되었다. 웹 컴파일러는 다양한 소프트웨어 언어를 지원하며, 컴파일 결과를 사용자에게 웹을 통해 보여준다. 하지만 4차 산업혁명의 핵심기술인 인공지능에 대한 웹 컴파일러는 아직 미비한 상황이다. 본 논문에서는 구글 인공지능 라이브러리인 텐서플로우 기반의 웹 컴파일러를 설계, 구현하였다. nodeJS 기반의 서버에 텐서플로우와 텐서플로우 서빙, 파이썬 주피터를 구현하고, meteorJS 기반의 웹 서버를 구축하여 인공지능 학습을 위한 시스템을 구현하였다. 소프트웨어 중심 사회에서 인공지능 학습을 위한 도구로써의 활용이 가능할 것으로 기대된다.
자율배송 운행 데이터는 코로나 시대의 라스트마일 배송에 대한 패러다임 변화를 주도하는 핵심이다. 국내 자율배송로봇과 해외 기술선도국가 간의 기술격차 해소를 위해서는 인공지능 학습에 사용 가능한 대규모 데이터 수집과 검증이 최우선으로 요구된다. 따라서 해외 기술선도국가에서는 인공지능 학습데이터를 누구든 사용가능한 공공데이터 형태로 오픈하여 검증과 기술발전에 기여하고 있다. 본 논문은 자율배송로봇 학습을 목적으로 326개의 객체를 수집하고 Mask r-cnn, Yolo v3 등의 인공지능 모델을 학습하고 검증하였다. 추가적으로 두 모델을 기반으로 비교하고 향후 자율배송로봇 연구에 요구되는 요소를 고찰하였다.
최근 인공지능의 딥러닝과 머신러닝을 이용한 예측시스템에 관한 연구가 활발히 진행되고 있다. 인공지능의 발전으로 인해 투자관리자의 역할을 인공지능을 대신하고 있으며, 투자관리자보다 높은 수익률로 인해 점차 인공지능으로 거래를 하는 알고리즘 거래가 보편화하고 있다. 알고리즘 매매는 인간의 감정을 배제하고 조건에 따라 기계적으로 매매를 진행하기 때문에 장기적으로 접근했을 때 인간의 매매 수익률보다 높게 나온다. 인공지능의 딥러닝 기법은 과거의 시계열 데이터를 학습하고 미래를 예측하여 인간처럼 학습하게 되고, 변화하는 전략에 대응할 수 있어 활용도가 증가하고 있다. 특히 LSTM기법은 과거의 데이터 일부를 기억하거나 잊어버리는 형태로 최근의 데이터의 비중으로 높여 미래 예측에 사용하고 있다. 최근 facebook에서 개발한 인공지능 알고리즘인 fbprophet은 높은 예측 정확도를 자랑하며 주가나 암호화폐 시세 예측에 사용되고 있다. 따라서 본 연구는 fbprophet을 활용하여 실제 값과 차이를 분석하고 정확한 예측을 위한 조건들을 제시하여 암호화폐 자동매매를 하기 위한 새로운 알고리즘을 제공하여 건전한 투자 문화를 정착시키는 데 이바지하고자 한다.
모발의 필수 미네랄 원소 농도 데이터로 인공지능을 학습시킨 후, 피험자의 모발 미네랄 원소 농도로 나이를 예측하도록 하고 그 결과를 피험자의 실제 나이와 비교하여 연관성을 조사하였다. 전체 모발 데이터는 296개이었으며그 중 2/3를 인공지능 학습에 그리고 1/3을 피험자 데이터로 사용하였다. 25세 이하의 성장기 피험자의 실제 나이와 인공지능이 예측한 나이 사이에는 0.678 의 중상 정도의 상관관계가 있었다. 중년의 피험자 그룹에서는 연관성이 거의 없었고 노년의 피험자 그룹에서는 0.522의 약한 상관관계를 보였다. 모발의 미네랄 원소 농도 데이터를 이용한 인공지능의 유용성을 확보하기 위해서는 더 많은 수의 데이터를 제공하여 인공지능을 학습시키는 과정이 필요하다.
4차 산업혁명과 인공지능이 대두되면서 사회구조가 변화하고 있으며, 미래 인재 양성을 위한 인공지능 교육에 대한 세계적인 관심이 높아지고 있다. 이에 본 연구는 고등학교 1학년 학습자를 위한 인공지능 융합 국어 교과 교육 프로그램을 개발하는 것을 목적으로 하여 ADDIE 모형에 근거하여 교수·학습 프로그램을 개발하였다. 교육 프로그램의 효과를 평가하기 위해 미래 핵심역량 4C(Collaboration-협업, Communication-의사소통, Critical Thinking-비판적 사고, Creativity-창의력)과 지식정보처리 역량에 대한 사전-사후 검사를 수행하였고 총 9차시 동안 4개의 작은 프로젝트들로 수업을 구성하여 학생들에게 인공지능을 융합한 국어 교과 교육의 새로운 경험을 제공하고자 하였다. 그 결과, 프로그램 적용 학생들은 모든 영역에서 미래 핵심역량의 향상을 나타냈으며, 만족도 및 질적 분석에서도 긍정적인 결과를 도출했다. 이를 통해 본 프로그램이 고등학교 국어 교육에 인공지능을 성공적으로 융합하여 학생들의 미래 인재 양성에 기여 할 수 있는 가능성을 제시하고자 한다.
기록이나 문헌의 자동분류에 관한 연구는 오래 전부터 시작되었다. 최근에는 인공지능 기술이 발전하면서 기계학습이나 딥러닝을 접목한 연구로 발전되고 있다. 이 연구에서는 우선 문헌의 자동분류와 인공지능의 학습방식이 발전해 온 과정을 살펴보았다. 또 기계학습 중 특히 지도학습 방식의 특징과 다양한 사례를 통해 기록관리 분야에 인공지능 기술을 적용해야 할 필요성에 대해 알아보았다. 그리고 실제로 지도학습 방식으로 서울시의 결재문서를 ETRI의 엑소브레인을 통해 정부기능분류체계로 자동분류해 보았다. 이를 통해 기록을 다양한 방식의 분류체계로 자동분류하기 위한 각 과정의 고려사항을 도출하였다.
가까운 미래에 인공지능과 컴퓨터 네트워크 기술이 발전함에 따라, 인공지능과의 협업이 중요하게 될 것이다. 인공지능 시대에는 사람 간의 의사소통과 협업 능력이 인재의 중요한 요소라고 할 수 있다. 이를 위해서, 컴퓨터 과학 기반의 인공지능이 어떻게 동작하는지를 파악하는 것이 필요하다. 컴퓨터 과학 교육을 위해서는 문제 해결 학습 중심의 알고리즘 교육에 초점을 두는 것이 효율적이다. 본 연구에서는 문제 해결 학습 중심의 알고리즘 교육을 받은 대학생 28명을 대상으로 학기 초의 컴퓨팅 사고력 진단을 실시한 결과와 학기 말의 만족도 조사와 학업 성적을 비교 분석하였다. 학생들의 컴퓨팅 사고력을 진단한 결과와 문제 해결 학습, 교수법, 강의 만족도, 기타 환경 요인에서 상관관계가 나타났고, 회귀분석을 실시한 결과 문제 해결 학습이 강의 만족도와 컴퓨팅 사고력 향상에 영향을 주었음을 확인하였다. 컴퓨터 과학 교육을 위해서 문제 해결 학습 기법과 함께 학생들의 만족도를 향상하는 방법을 추구한다면 학생들의 문제 해결 능력 향상에 도움이 될 것이다.
본 논문은 인공지능(AI)을 이용하여 통일신라 석탑인 '경주 불국사 삼층석탑'의 복원을 위해 3D 모델링 과정을 연구했다. 기존의 3D 모델링 방식은 수많은 Verts와 Face를 생성하므로, 이로 인해 AI 학습에 상당한 시간이 소요한다. 이에 따라, Verts와 Face의 수를 낮추어 더 효율적인 3D 모델링을 수행하는 방식이 필요하다. 이를 위해, 본 연구에서는 석탑의 구조를 정점 및 면의 수로 분석하고, AI 학습에 최적화된 면수를을 최소화 하도록 모델링 방법을 연구했다. 더불어, 우리나라의 석탑 복원을 위한 인공지능학습에 최적화된 모델링 방법론을 제안하고, 인공지능 학습에 필요한 DataSet 을 확보하는 데 의미가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.