• Title/Summary/Keyword: 인공지능 및 시뮬레이션 기반 예측

Search Result 17, Processing Time 0.019 seconds

A Study on LSTM-based water level prediction model and suitability evaluation (LSTM 기반 배수지 수위 변화 예측모델과 적합성 평가 연구)

  • Lee, Eunji;Park, Hyungwook;Kim, Eunju
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.56-62
    • /
    • 2022
  • Water reservoir is defined as a storage space to hold and supply filtered water and it's significantly important to manage water level in the water reservoir so as to stabilize water supply by controlling water supply depending on demand. Liquid level sensors have been installed in the water reservoir and the pumps in the booster station facilitated management for optimum water level in the water reservoir. But the incident responses including sensor malfunction and communication breakdown actually count on manager's inspection, which involves risk of accidents. To stabilize draining facility management, this study has come up with AI model that predicts changes in the water level in the water reservoir. Going through simulation in the case of missing data in the water level to verify stability in relation to the field application of the prediction model for water level changes in the reservoir, the comparison of actual change value and predicted value allows to test utility of the model.

Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM (SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발)

  • Yoo, Sungyeob;Yoo, Dong-Yeon;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.491-498
    • /
    • 2019
  • Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.

Machine Learning-based Process Condition Selection Method to Prevent Defects in Korean Traditional Brass Casting (한국 전통 유기 제작에서 결함을 방지하기 위한 기계 학습 기반의 공정 조건 선택 방안)

  • Lee, Seungcheol;Han, Dosuck;Yi, Hyuck;Kim, Naksoo
    • Journal of Korea Foundry Society
    • /
    • v.42 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • In the present study, in order to prevent the misrun defects that occur during traditional brass casting, a method for selecting the proper casting process conditions is proposed. A learning model was developed and demonstrated to be able to learn the presence or absence of defects according to the casting process conditions and to predict the occurrence of defects depending on the certain process given. Appropriate process conditions were determined by applying the proposed method, and the determined conditions were verified through a comparison of different simulation results with additional conditions. With this method, it is possible to determine the casting process conditions that will prevent defects in the desired sand model. This technology is expected to contribute to realization of smart traditional brass farming workshops.

Research on Dispersion Prediction Technology and Integrated Monitoring Systems for Hazardous Substances in Industrial Complexes Based on AIoT Utilizing Digital Twin (디지털트윈을 활용한 AIoT 기반 산업단지 유해물질 확산예측 및 통합관제체계 연구)

  • Min Ho Son;Il Ryong Kweon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.484-499
    • /
    • 2024
  • Purpose: Recently, due to the aging of safety facilities in national industrial complexes, there has been an increase in the frequency and scale of safety accidents, highlighting the need for a shift toward a prevention-centered disaster management paradigm and the establishment of a digital safety network. In response, this study aims to provide an information system that supports more rapid and precise decision-making during disasters by utilizing digital twin-based integrated control technology to predict the spread of hazardous substances, trace the origin of accidents, and offer safe evacuation routes. Method: We considered various simulation results, such as surface diffusion, upper-level diffusion, and combined diffusion, based on the actual characteristics of hazardous substances and weather conditions, addressing the limitations of previous studies. Additionally, we designed an integrated management system to minimize the limitations of spatiotemporal monitoring by utilizing an IoT sensor-based backtracking model to predict leakage points of hazardous substances in spatiotemporal blind spots. Results: We selected two pilot companies in the Gumi Industrial Complex and installed IoT sensors. Then, we operated a living lab by establishing an integrated management system that provides services such as prediction of hazardous substance dispersion, traceback, AI-based leakage prediction, and evacuation information guidance, all based on digital twin technology within the industrial complex. Conclusion: Taking into account the limitations of previous research, we used digital twin-based AI analysis to predict hazardous chemical leaks, detect leakage accidents, and forecast three-dimensional compound dispersion and traceback diffusion.

Optimal Operational Plan of AGV and AMR in Fulfillment Centers using Simulation (시뮬레이션 기반 풀필먼트센터 최적 AGV 및 AMR 운영 계획 수립)

  • JunHyuk Choi;KwangSup Shin
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.17-28
    • /
    • 2021
  • Current development of technologies related to 4th industrial revolution and the pandemic of COVID-19 lead the rapid expansion of e-marketplace. The level of competition among several companies gets increased by introducing different strategies. To cope with the current change in the market and satisfy the customers who request the better delivery service, the new concept, fulfillment, has been introduced. It makes the leadtime of process from order picking to delivery reduced and the efficiency improved. Still, the efficiency of operation in fulfillment centers constrains the service level of the entire delivery process. In order to solve this problem, several different approaches for demand forecasting and coordinating supplies using Bigdata, IoT and AI, which there exists the trivial limitations. Because it requires the most lead time for operation and leads the inefficiency the process from picking to packing the ordered items, the logistics service providers should try to automate this procedure. In this research, it has been proposed to develop the efficient plans to automate the process to move the ordered items from the location where it stores to stage for packing using AGV and AMR. The efficiency of automated devices depends on the number of items and total number of devices based on the demand. Therefore, the result of simulation based on several different scenarios has been analyzed. From the result of simulation, it is possible to identify the several factors which should be concerned for introducing the automated devices in the fulfillment centers. Also, it can be referred to make the optimal decisions based on the efficiency metrics.

Deep Learning-based Technology Valuation and Variables Estimation (딥러닝 기반의 기술가치평가와 평가변수 추정)

  • Sung, Tae-Eung;Kim, Min-Seung;Lee, Chan-Ho;Choi, Ji-Hye;Jang, Yong-Ju;Lee, Jeong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.48-58
    • /
    • 2021
  • For securing technology and business competences of companies that is the engine of domestic industrial growth, government-supported policy programs for the creation of commercialization results in various forms such as 『Technology Transaction Market Vitalization』 and 『Technology Finance-based R&D Commercialization Support』 have been carried out since 2014. So far, various studies on technology valuation theories and evaluation variables have been formalized by experts from various fields, and have been utilized in the field of technology commercialization. However, Their practicality has been questioned due to the existing constraint that valuation results are assessed lower than the expectation in the evaluation sector. Even considering that the evaluation results may differ depending on factors such as the corporate situation and investment environment, it is necessary to establish a reference infrastructure to secure the objectivity and reliability of the technology valuation results. In this study, we investigate the evaluation infrastructure built by each institution and examine whether the latest artificial neural networks and deep learning technologies are applicable for performing predictive simulation of technology values based on principal variables, and predicting sales estimates and qualitative evaluation scores in order to embed onto the technology valuation system.

Development of Machine Learning-Based Platform for Distillation Column (증류탑을 위한 머신러닝 기반 플랫폼 개발)

  • Oh, Kwang Cheol;Kwon, Hyukwon;Roh, Jiwon;Choi, Yeongryeol;Park, Hyundo;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.565-572
    • /
    • 2020
  • This study developed a software platform using machine learning of artificial intelligence to optimize the distillation column system. The distillation column is representative and core process in the petrochemical industry. Process stabilization is difficult due to various operating conditions and continuous process characteristics, and differences in process efficiency occur depending on operator skill. The process control based on the theoretical simulation was used to overcome this problem, but it has a limitation which it can't apply to complex processes and real-time systems. This study aims to develop an empirical simulation model based on machine learning and to suggest an optimal process operation method. The development of empirical simulations involves collecting big data from the actual process, feature extraction through data mining, and representative algorithm for the chemical process. Finally, the platform for the distillation column was developed with verification through a developed model and field tests. Through the developed platform, it is possible to predict the operating parameters and provided optimal operating conditions to achieve efficient process control. This study is the basic study applying the artificial intelligence machine learning technique for the chemical process. After application on a wide variety of processes and it can be utilized to the cornerstone of the smart factory of the industry 4.0.