• 제목/요약/키워드: 인공지능 모델링

Search Result 213, Processing Time 0.023 seconds

A Methodology of Decision Making Condition-based Data Modeling for Constructing AI Staff (AI 참모 구축을 위한 의사결심조건의 데이터 모델링 방안)

  • Han, Changhee;Shin, Kyuyong;Choi, Sunghun;Moon, Sangwoo;Lee, Chihoon;Lee, Jong-kwan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.237-246
    • /
    • 2020
  • this paper, a data modeling method based on decision-making conditions is proposed for making combat and battlefield management systems to be intelligent, which are also a decision-making support system. A picture of a robot seeing and perceiving like humans and arriving a point it wanted can be understood and be felt in body. However, we can't find an example of implementing a decision-making which is the most important element in human cognitive action. Although the agent arrives at a designated office instead of human, it doesn't support a decision of whether raising the market price is appropriate or doing a counter-attack is smart. After we reviewed a current situation and problem in control & command of military, in order to collect a big data for making a machine staff's advice to be possible, we propose a data modeling prototype based on decision-making conditions as a method to change a current control & command system. In addition, a decision-making tree method is applied as an example of the decision making that the reformed control & command system equipped with the proposed data modeling will do. This paper can contribute in giving us an insight of how a future AI decision-making staff approaches to us.

A Technique on the 3-D Terrain Analysis Modeling for Optimum Site Selection and development of Stereo Tourism in the Future (미래입체관광의 최적지선정 및 개발을 위한 3차원지형분석모델링 기법)

  • Yeon, Sang-Ho;Choi, Seung-Kuk
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.415-422
    • /
    • 2013
  • The contents development for the Internet and cyber tour has been attempted in a number of areas. 3D topography of the spatial environment, land planning and land information contents as a 3D tour of the future ubiquitous city safe for tourism due to the implementation of information made available major area. Domestic service, and in urban areas of the country where land and precise spatial information in order to shoot satellites and aircraft in the area you want to mount the camera on a variety of photo images taken by conducting 3D spatial that is required is able to obtain the information. Geo spatial information in a variety of direct or indirect acquisition of the initial spatial data into a database for accurate collection, storage, editing, manipulation and application technology changes in the future by establishing a database of 3D spatial by securing content organization ubiquitous tourist to take advantage of new tourism industry was greatly. As a result of this study for future tourism using geo spatial information and analysis of 3D modeling by intelligent land information indirectly, with quite a few stereo site experience and a variety of tourist spatial acquisition and utilization of information could prove.

An Exploratory Study of Generative AI Service Quality using LDA Topic Modeling and Comparison with Existing Dimensions (LDA토픽 모델링을 활용한 생성형 AI 챗봇의 탐색적 연구 : 기존 AI 챗봇 서비스 품질 요인과의 비교)

  • YaeEun Ahn;Jungsuk Oh
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.191-205
    • /
    • 2023
  • Artificial Intelligence (AI), especially in the domain of text-generative services, has witnessed a significant surge, with forecasts indicating the AI-as-a-Service (AIaaS) market reaching a valuation of $55.0 Billion by 2028. This research set out to explore the quality dimensions characterizing synthetic text media software, with a focus on four key players in the industry: ChatGPT, Writesonic, Jasper, and Anyword. Drawing from a comprehensive dataset of over 4,000 reviews sourced from a software evaluation platform, the study employed the Latent Dirichlet Allocation (LDA) topic modeling technique using the Gensim library. This process resulted the data into 11 distinct topics. Subsequent analysis involved comparing these topics against established AI service quality dimensions, specifically AICSQ and AISAQUAL. Notably, the reviews predominantly emphasized dimensions like availability and efficiency, while others, such as anthropomorphism, which have been underscored in prior literature, were absent. This observation is attributed to the inherent nature of the reviews of AI services examined, which lean more towards semantic understanding rather than direct user interaction. The study acknowledges inherent limitations, mainly potential biases stemming from the singular review source and the specific nature of the reviewer demographic. Possible future research includes gauging the real-world implications of these quality dimensions on user satisfaction and to discuss deeper into how individual dimensions might impact overall ratings.

Impact of Ensemble Member Size on Confidence-based Selection in Bankruptcy Prediction (부도예측을 위한 확신 기반의 선택 접근법에서 앙상블 멤버 사이즈의 영향에 관한 연구)

  • Kim, Na-Ra;Shin, Kyung-Shik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.55-71
    • /
    • 2013
  • The prediction model is the main factor affecting the performance of a knowledge-based system for bankruptcy prediction. Earlier studies on prediction modeling have focused on the building of a single best model using statistical and artificial intelligence techniques. However, since the mid-1980s, integration of multiple techniques (hybrid techniques) and, by extension, combinations of the outputs of several models (ensemble techniques) have, according to the experimental results, generally outperformed individual models. An ensemble is a technique that constructs a set of multiple models, combines their outputs, and produces one final prediction. The way in which the outputs of ensemble members are combined is one of the important issues affecting prediction accuracy. A variety of combination schemes have been proposed in order to improve prediction performance in ensembles. Each combination scheme has advantages and limitations, and can be influenced by domain and circumstance. Accordingly, decisions on the most appropriate combination scheme in a given domain and contingency are very difficult. This paper proposes a confidence-based selection approach as part of an ensemble bankruptcy-prediction scheme that can measure unified confidence, even if ensemble members produce different types of continuous-valued outputs. The present experimental results show that when varying the number of models to combine, according to the creation type of ensemble members, the proposed combination method offers the best performance in the ensemble having the largest number of models, even when compared with the methods most often employed in bankruptcy prediction.

A Out-of-Bounds Read Vulnerability Detection Method Based on Binary Static Analysis (바이너리 정적 분석 기반 Out-of-Bounds Read 취약점 유형 탐지 연구)

  • Yoo, Dong-Min;Jin, Wen-Hui;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.687-699
    • /
    • 2021
  • When a vulnerability occurs in a program, it is documented and published through CVE. However, some vulnerabilities do not disclose the details of the vulnerability and in many cases the source code is not published. In the absence of such information, in order to find a vulnerability, you must find the vulnerability at the binary level. This paper aims to find out-of-bounds read vulnerability that occur very frequently among vulnerability. In this paper, we design a memory area using memory access information appearing in binary code. Out-of-bounds Read vulnerability is detected through the designed memory structure. The proposed tool showed better in code coverage and detection efficiency than the existing tools.

Study on Management of Water Pipes in Buildings using Augmented Reality (증강현실을 이용한 건물의 수도관 관리 방안 연구)

  • Sang-Hyun Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1229-1238
    • /
    • 2023
  • Digital twin is a technology that creates a virtual space that replicates the real world and manages the real world efficiently by integrating the real and virtual spaces. The digital twin concept for water facilities is to effectively manage water pipes in the real world by implementing them in a virtual space and augmenting them to the interior space of the building. In the proposed method, the Unity 3D game engine is used to implement the application of digital twin technology in the interior of a building. The AR Foundation toolkit based on ARCore is used as the augmented reality technology for our Digital Twin implementation. In digital twin applications, it is essential to match the real and virtual worlds. In the proposed method, 2D image markers are used to match the real and virtual worlds. The Unity shader program is also applied to make the augmented objects visually realistic. The implementation results show that the proposed method is simple but accurate in placing water pipes in real space, and visually effective in representing water pipes on the wall.

Monte Carlo Simulation based Optimal Aiming Point Computation Against Multiple Soft Targets on Ground (몬테칼로 시뮬레이션 기반의 다수 지상 연성표적에 대한 최적 조준점 산출)

  • Kim, Jong-Hwan;Ahn, Nam-Su
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.47-55
    • /
    • 2020
  • This paper presents a real-time autonomous computation of shot numbers and aiming points against multiple soft targets on grounds by applying an unsupervised learning, k-mean clustering and Monte carlo simulation. For this computation, a 100 × 200 square meters size of virtual battlefield is created where an augmented enemy infantry platoon unit attacks, defences, and is scatted, and a virtual weapon with a lethal range of 15m is modeled. In order to determine damage types of the enemy unit: no damage, light wound, heavy wound and death, Monte carlo simulation is performed to apply the Carlton damage function for the damage effect of the soft targets. In addition, in order to achieve the damage effectiveness of the enemy units in line with the commander's intention, the optimal shot numbers and aiming point locations are calculated in less than 0.4 seconds by applying the k-mean clustering and repetitive Monte carlo simulation. It is hoped that this study will help to develop a system that reduces the decision time for 'detection-decision-shoot' process in battalion-scaled combat units operating Dronebot combat system.

Parsimonious Neural Network and Heuristic Search Method for Software Effort Estimation Model (축약형 신경망과 휴리스틱 검색에 의한 소프트웨어 공수 예측모델)

  • Jeon, Eung-Seop
    • The KIPS Transactions:PartD
    • /
    • v.8D no.2
    • /
    • pp.154-165
    • /
    • 2001
  • A number of attempts to develop methods for measuring software effort have been focused on the area of software engineering and many models have also been suggested to estimate the effort of software projects. Almost all current models use algorithmic or statistical mechanisms, but the existing algorithmic effort estimation models have failed to produce accurate estimates. Furthermore, they are unable to reflect the rapidly changing technical environment of software development such as module reuse, 4GL, CASE tool, etc. In addition, these models do not consider the paradigm shift of software engineering and information systems(i.e., Object Oriented system, Client-Server architecture, Internet/Intranet based system etc.). Thus, a new approach to software effort estimation is needed. After reviewing and analyzing the problems of the current estimation models, we have developed a model and a system architecture that will improve estimation performance. In this paper, we have adopted a neural network model to overcome some drawbacks and to increase estimation performance. We will also address the efficient system architecture and estimation procedure by a similar case-based approach and finally suggest the heuristic search method to find the best estimate of target project through empirical experiments. According to our experiment with the optimally parsimonious neural network model the mean error rate was significantly reduced to 14.3%.

  • PDF

Fault Localization for Self-Managing Based on Bayesian Network (베이지안 네트워크 기반에 자가관리를 위한 결함 지역화)

  • Piao, Shun-Shan;Park, Jeong-Min;Lee, Eun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.137-146
    • /
    • 2008
  • Fault localization plays a significant role in enormous distributed system because it can identify root cause of observed faults automatically, supporting self-managing which remains an open topic in managing and controlling complex distributed systems to improve system reliability. Although many Artificial Intelligent techniques have been introduced in support of fault localization in recent research especially in increasing complex ubiquitous environment, the provided functions such as diagnosis and prediction are limited. In this paper, we propose fault localization for self-managing in performance evaluation in order to improve system reliability via learning and analyzing real-time streams of system performance events. We use probabilistic reasoning functions based on the basic Bayes' rule to provide effective mechanism for managing and evaluating system performance parameters automatically, and hence the system reliability is improved. Moreover, due to large number of considered factors in diverse and complex fault reasoning domains, we develop an efficient method which extracts relevant parameters having high relationships with observing problems and ranks them orderly. The selected node ordering lists will be used in network modeling, and hence improving learning efficiency. Using the approach enables us to diagnose the most probable causal factor with responsibility for the underlying performance problems and predict system situation to avoid potential abnormities via posting treatments or pretreatments respectively. The experimental application of system performance analysis by using the proposed approach and various estimations on efficiency and accuracy show that the availability of the proposed approach in performance evaluation domain is optimistic.

Retrieval of Land Surface Temperature Using Landsat 8 Images with Deep Neural Networks (Landsat 8 영상을 이용한 심층신경망 기반의 지표면온도 산출)

  • Kim, Seoyeon;Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.487-501
    • /
    • 2020
  • As a viable option for retrieval of LST (Land Surface Temperature), this paper presents a DNN (Deep Neural Network) based approach using 148 Landsat 8 images for South Korea. Because the brightness temperature and emissivity for the band 10 (approx. 11-㎛ wavelength) of Landsat 8 are derived by combining physics-based equations and empirical coefficients, they include uncertainties according to regional conditions such as meteorology, climate, topography, and vegetation. To overcome this, we used several land surface variables such as NDVI (Normalized Difference Vegetation Index), land cover types, topographic factors (elevation, slope, aspect, and ruggedness) as well as the T0 calculated from the brightness temperature and emissivity. We optimized four seasonal DNN models using the input variables and in-situ observations from ASOS (Automated Synoptic Observing System) to retrieve the LST, which is an advanced approach when compared with the existing method of the bias correction using a linear equation. The validation statistics from the 1,728 matchups during 2013-2019 showed a good performance of the CC=0.910~0.917 and RMSE=3.245~3.365℃, especially for spring and fall. Also, our DNN models produced a stable LST for all types of land cover. A future work using big data from Landsat 5/7/8 with additional land surface variables will be necessary for a more reliable retrieval of LST for high-resolution satellite images.