• 제목/요약/키워드: 인공지능망

Search Result 661, Processing Time 0.029 seconds

Calculating Data and Artificial Neural Network Capability (데이터와 인공신경망 능력 계산)

  • Yi, Dokkyun;Park, Jieun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • Recently, various uses of artificial intelligence have been made possible through the deep artificial neural network structure of machine learning, demonstrating human-like capabilities. Unfortunately, the deep structure of the artificial neural network has not yet been accurately interpreted. This part is acting as anxiety and rejection of artificial intelligence. Among these problems, we solve the capability part of artificial neural networks. Calculate the size of the artificial neural network structure and calculate the size of data that the artificial neural network can process. The calculation method uses the group method used in mathematics to calculate the size of data and artificial neural networks using an order that can know the structure and size of the group. Through this, it is possible to know the capabilities of artificial neural networks, and to relieve anxiety about artificial intelligence. The size of the data and the deep artificial neural network are calculated and verified through numerical experiments.

Evolving Team-Agent Based on Dynamic State Evolutionary Artificial Neural Networks (동적 상태 진화 신경망에 기반한 팀 에이전트의 진화)

  • Jin, Xiang-Hua;Jang, Dong-Heon;Kim, Tae-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.290-299
    • /
    • 2009
  • Evolutionary Artificial Neural Networks (EANNs) has been highly effective in Artificial Intelligence (AI) and in training NPCs in video games. When EANNs is applied to design game NPCs' smart AI which can make the game more interesting, there always comes two important problems: the more complex situation NPCs are in, the more complex structure of neural networks needed which leads to large operation cost. In this paper, the Dynamic State Evolutionary Neural Networks (DSENNs) is proposed based on EANNs which deletes or fixes the connection of the neurons to reduce the operation cost in evolution and evaluation process. Darwin Platform is chosen as our test bed to show its efficiency: Darwin offers the competitive team game playing behaviors by teams of virtual football game players.

  • PDF

인공신경망과 사례기반추론을 활용한 옵션가격결정에 관한 연구

  • 김명섭;김광용
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.375-382
    • /
    • 1999
  • 본 연구는 데이터마이닝 기법과 전문가 지식을 활용한 옵션가격 결정모형을 제시하는데 목적이 있다. 첫째, 데이터마이닝 기법 주의 하나인 인공신경망 기법을 활용하여 변동성과 옵션가격을 추정하고, 이를 전통적인 재무이론의 결과와 비교하였다. 인공신경망으로 추정된 변동성은 기존의 모형에 비해 개선된 성과를 보였으며, 가격결정모형은 대등한 성과를 보였다. 또한 모수적 기법과 비모수적 기법의 통합을 통해 성과의 개선을 가져올 수 있음을 보였다. 둘째, 시장 참여자들의 정보를 반영하여 옵션의 이론적 가격결정모형의 성과를 개선할 수 있는 사례기반추론시스템을 제안하였다.

  • PDF

기업부도예측을 위한 통합알고리즘

  • Bae Jae-Gwon;Kim Jin-Hwa
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.195-202
    • /
    • 2006
  • 본 연구에서는 보다 효과적인 기업부도예측을 위하여, 동계적 방법과 인공지능 방법을 결합한 통합모형을 제시하였다. 이를 위하여 통계적인 모형 중에서 가장 널리 활용되고 있는 다변량 판별분석, 로지스틱 회귀분석과 인공 지능적인 방법으로서 최근 널리 사용되고 있는 인공신경망, 규칙유도기법, 베이지안 망의 5가지 방법론을 통합한 Voting with Performance & Weights from ANN(WP-ANN) 통합모형을 제시하였다. 실험결과, 본 연구에서 제안한 WP-ANN 통합모형은 다변량 판별분석, 로지스탁 회귀분석, 인공신경망, 규칙유도기법, 베이지안 망 등의 단일모형과 비교한 결과 가장 예측정확성이 유수한 것으로 나타났다. 따라서 본 연구를 통해 기업부도예측에 있어서 WP-ANN 통합모형이 기존의 모형들에 비해 우수한 예측정확성을 나타냄을 알 수 있었다.

  • PDF

Usability Test of Non-Financial Information in Bankruptcy Prediction using Artificial Neural Network -The Case of Small and Medium-Sized Firms- (인공신경망을 이용한 중소기업도산예측에 있어서의 비재무정보의 유용성 검증)

  • 이재식;한재홍
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.123-134
    • /
    • 1995
  • 인공신경망을 이용한 기업도예측에 관한 연구는 일반적으로 대기업을 대상으로 수행되고 있으며, 분석자료로는주로 재무제표에서 얻어지는 재무정보를 사용하고 있다. 이들 대기업의 재무정보들은 비교적양이 풍부하고 신뢰성이 높기 때문에 인공신경망을 이용한 도산예측의 적중률이 80%∼85%의 높은 수준을 보이고 있다. 하지만, 중소기업이 재무정보는 불충분할 뿐만 아니라 신뢰성이 낮을 가능성이 높기 때문에, 중소기업의 도산예측에 있어서 재무정보만을 사용하게 되면 그 정확도가 떨어지게 된다. 본 연구에서는 인공신경망을 이용한 중소기업의 도산예측에 있어서, 재무정보를 보완할 수 있는 비재무정보의 유용성을 검증하였다. 연구결과 본 연구에서 사용한 비재무정보가 획득가능한 비재무정보중 극히 일부에 지나지 않았음에도 불고하고, 재무정보만을 사용하였을 때보다 예측력이 10%정도나 향상되었다.

  • PDF

Discharge prediction in a stream using ANN technique (인공신경망 기법을 이용한 하천에서 유량 예측)

  • Choi, Seongwook;Kang, Dongwon;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.116-116
    • /
    • 2022
  • 현재 인공지능은 공학적 문제 해결 외에도 다양한 분야에 적용되어 매우 친숙하게 활용되고 있다. 특히 하천 분야에서는 시설물 주위 국부세굴 또는 어류 서식처 분석과 같이 관련 변수들의 복잡성으로 적절한 결과를 쉽게 얻어내기 어려운 것들에 적용되고 있다. 그 외에도 인공지능 기법을 적용할 수 있는 분야로 하천에서의 수위를 이용하여 유량을 예측하는 것이 있다. 기존에는 수위-유량 관계 곡선을 만들어 수위를 이용하여 유량을 예측하였으나, 관계곡선 제작에 활용된 수위와 유량 범위에서 벗어나는 경우 과다한 유량으로 계산되는 경우가 있다. 본 연구에서는 인공지능 기법 중 하나인 인공신경망 기법을 사용하여 하천의 유량 예측을 수행하였다. 기존 국가수자원관리종합정보시스템에 기록된 자료를 활용하여 수위와 유량 자료를ANN에 학습시키고 학습에 활용하지 않은 시기의 자료를 이용하여 전반적인 유량 예측 성능과 루프형 수위-유량 관계 곡선을 생성할 수 있는지를 검토하였다. 또한 학습 범위를 벗어난 홍수량에 대한 측정 결과를 검토하고, 기존 수위-유량 관계곡선과 비교하여 그 성능을 검토하였다.

  • PDF

Development of DSP Process-based Artificial-Intelligent Power Quality Equipment for Single-phase Power System (DSP320C6713기반의 인공지능형 단상전력품질 진단기 개발연구)

  • Kwack, Sun-Geun;Chung, Gyo-Bum;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.66-68
    • /
    • 2008
  • 본 논문은, 전력계통 내의 순시 파형으로부터 전력품질 자동진단을 위한 인공지능형 단상전력품질 진단기를 제안한다. 진단하는 전력품질은 전압강하(Sag), 전압상승(Swell), 과도현상(Transient) 및 전고조파함유율(THD) 이다. 인공지능 구현을 위해서 인공신경망 이론을 이용하였으며, 시뮬레이션 및 TI DSP 320C6713 사용하여 하드웨어를 구현하였다. 인공신경망의 학습을 위하여, 00변전소에서 일년(2007년)동안 측정한 데이터 중에서 Sag, Swell, Transient 특성이 명확히 관측된 150주기의 파형과 정상상태의 50주기 파형으로 구성된 총 200주기의 데이터를 사용하였다. 측정된 파형을 1/60[sec.]마다 256번 샘플링하여, FFT 및 웨이블렛 변환을 시행하여 얻어진 값을 인공신경망 학습에 사용하였다. 상용프로그램 PSIM을 이용하여 인공신경망 학습을 시뮬레이션하였으며, DSP 프로세서를 이용하여 하드웨어로 구현하여 검증하였다.

  • PDF

A Neural Network-based Artificial Intelligence Algorithm with Movement for the Game NPC (게임 NPC를 위한 신경망 기반의 이동 안공지능 알고리즘)

  • Joe, In-Whee;Choi, Moon-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1181-1187
    • /
    • 2010
  • This paper proposes a mobile AI (Artificial Intelligence) conducting decision-making in the game through education for intelligent character on the basis of Neural Network. Neural Network is learned through the input/output value of the algorithm which defines the game rule and the problem solving method. The learned character is able to perceive the circumstances and make proper action. In this paper, the mobile AI using Neural Network has been step-by-step designed, and a simple game has been materialized for its functional experiment. In this game, the goal, the character, and obstacles exist on regular 2D space, and the character, evading obstacles, has to move where the goal is. The mobile AI can achieve its goals in changing environment by learning the solution to several problems through the algorithm defined in each experiment. The defined algorithm and Neural Network are designed to make the input/output system the same. As the experimental results, the suggested mobile AI showed that it could perceive the circumstances to conduct action and to complete its mission. If mobile AI learns the defined algorithm even in the game of complex structure, its Neural Network will be able to show proper results even in the changing environment.

An analysis of learning performance changes in spiking neural networks(SNN) (Spiking Neural Networks(SNN) 구조에서 뉴런의 개수와 학습량에 따른 학습 성능 변화 분석)

  • Kim, Yongjoo;Kim, Taeho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.463-468
    • /
    • 2020
  • Artificial intelligence researches are being applied and developed in various fields. In this paper, we build a neural network by using the method of implementing artificial intelligence in the form of spiking natural networks (SNN), the next-generation of artificial intelligence research, and analyze how the number of neurons in that neural networks affect the performance of the neural networks. We also analyze how the performance of neural networks changes while increasing the amount of neural network learning. The findings will help optimize SNN-based neural networks used in each field.

STL-Attention based Traffic Prediction with Seasonality Embedding (계절성 임베딩을 고려한 STL-Attention 기반 트래픽 예측)

  • Yeom, Sungwoong;Choi, Chulwoong;Kolekar, Shivani Sanjay;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.95-98
    • /
    • 2021
  • 최근 비정상적인 네트워크 활동 감지 및 네트워크 서비스 프로비저닝과 같은 다양한 분야에서 응용되는 네트워크 트래픽 예측 기술이 네트워크 통신 문제에 의한 트래픽의 결측 및 네트워크 유저의 불규칙한 활동에 의한 비선형 특성 때문에 발생하는 성능 저하를 극복하기 위해 딥러닝 신경망에 대한 연구가 활성화되고 있다. 이 딥러닝 신경망 중 시계열 딥러닝 신경망은 단기 네트워크 트래픽 볼륨을 예측할 때 낮은 오류율을 보인다. 하지만, 시계열 딥러닝 신경망은 기울기 소멸 및 폭발과 같은 비선형성, 다중 계절성 및 장기적 의존성 문제와 같은 한계를 보여준다. 이 논문에서는 계절성 임베딩을 고려한 주의 신경망 기반 트래픽 예측 기법을 제안한다. 제안하는 기법은 STL 분해 기법을 통해 분해된 트래픽 트랜드, 계절성, 잔차를 이용하여 일별 및 주별 계절성을 임베딩하고 이를 주의 신경망을 기반으로 향후 트래픽을 예측한다.