• Title/Summary/Keyword: 인공위성 탑재품

Search Result 12, Processing Time 0.017 seconds

Development and Verification of Thermal Analysis Model for Thermal Vacuum Test of Satellite Components (인공위성 탑재품 수준 열진공 시험에 대한 열해석 모델의 개발과 환경시험 결과를 이용한 검증)

  • Kim, Sang-Ho;Seo, Hyun-Suk;You, Jae-Ho;Han, Eun-Soo;Kim, Tai-Kyung;Kim, Hyeong-Dong;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.842-847
    • /
    • 2010
  • Thermal analysis for the simulation of satellite component level thermal vacuum test processes was carried out by considering thermal vacuum test environment condition, thermal vacuum chamber configuration, and satellite's inner thermal environment. The transient analysis results can be obtained for the temperatures of component and thermal vacuum chamber assemblies. The thermal analysis model was verified with the component thermal environmental test results by using enhanced thermal vacuum chamber.

Prediction and Validation of Design Loads of Satellite Components Using Modal Mass Acceleration Curve (모달 질량 가속도 곡선을 이용한 인공위성 탑재품의 설계하중 예측 및 검증)

  • Go, Myeong-Seok;Lim, Jae Hyuk;Kim, Kyung-Won;Hwang, Do-Soon;Oh, Hyunung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.739-748
    • /
    • 2021
  • This paper discusses the prediction and validation of design loads of satellite components using modal mass acceleration curve (Modal MAC). To calculate the acceleration upper bound of the satellite components subjected to the launch environment by the Modal MAC, the parameters of SpaceX Falcon 9 launch vehicle were used, and the acceleration upper bound curve in the modal domain was derived. After that, the maximum acceleration loads applied to the satellite components were predicted by combining Modal MAC with the spacecraft interface loads of the satellite/launch vehicle and modal information of the satellite. In addition, the accuracy of the Modal MAC was validated through comparison with the results of the coupled loads analysis using a simple satellite and launch vehicle model.

Bus Voltage Drop Analysis Caused by Payload Operation of LEO Satellite (저궤도 인공위성 탑재체 구동에 따른 버스 전압 강하 해석)

  • Park, Hee-Sung;Jang, Jin-Baek;Park, Sung-Woo;Lee, Sang-Kon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • SAR payload of LEO satellite will consume about 150A current. This high current makes the voltage drop between battery, satellite main bus and payload interface, which cannot guarantee the input voltage level of the satellite electrical unit and payload. So, it is necessary to predict the main bus and payload input voltage level when the payload works. In this paper, the worst case analysis of the harness and contact resistance was executed and predicted the voltage drop when the payload works.

MEASUREMENTS OF ALBEDO AND SPECTRAL PATTERNS OF MAN-MADE SATELLITE MATERIALS (인공위성 재질별 반사율 및 분광유형 측정)

  • 이동규;김상준;이준호;한원용;민상웅
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.319-326
    • /
    • 2002
  • Laboratory tests have been carried out for investigation of the spectroscopic characteristics at visible wavelength of 12 common satellite materials used in satellite bus and payload. The obtained spectral data show that the materials can be classified and identified since their spectral features and albedos distinctly differ among them. It is suggested that the result of the laboratory tests for the satellite materials can be used for the predictions of material types, material composition ratios, sizes, and masses in comparison with the spectral data obtained from observations of new satellites or space debris.

다목적실용위성 2호 비행모델 시험

  • 박종오;최종연;윤영수;권재욱;김영윤;조승원;안재철
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.105-105
    • /
    • 2003
  • 인공위성의 개발과정에서 비행모델을 만들기 전 EM (Engineering Model) 들로 구성하는 Electrical Test Bed (ETB) 를 개발하여 위성의 하니스를 포함함 각 서브시스템 전장품들의 성능을 점검하게 되고, ETB 시험기간 동안 발생된 문제점 들은 비행모델 설계와 제작에 반영하게 된다. 다목적실용위성 2호에 대한 ETB를 개발하여 각종 위성 전장품에 대한 성능과 부분품들간의 인터페이스 신호들의 점검을 성공적으로 완료하였으며, 시험기간 동안 발생된 각종 문제점들은 비행모델 설계와 제작에 이미 반영하였다. 본 논문에서는 다목적실용위성 2호 비행모델에 대한 시험을 위하여 각 서브시스템 즉, 원격측 정명령계, 전력계, 자세제어계의 전장품과 탑재소프트웨어 그리고 각종 시뮬레이터들의 구성과 전기/전자적인 기능시험을 위한 시험항목 및 방법에 대해 고찰하고자 한다.

  • PDF

Preliminary Thermal Analysis for LEO Satellite Optical Payload's Thermal Vacuum Test (저궤도위성 광학탑재체의 지상 열진공 시험을 위한 예비 열해석)

  • Lee, Jongl-Yul;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.466-473
    • /
    • 2011
  • The purpose of satellite thermal control design is to maintain all the elements of a spacecraft system within their temperature limits for all mission phases. The thermal analysis model for Low Earth Orbit satellite payload level simulation is established by considering thermal vacuum test environment condition, thermal vacuum chamber configuration, and satellite's payload inner thermal environment. The established thermal analysis model is used to determine thermal vacuum test conditions and test case requirements.

Research Trends in Tailoring of Thermal Environment Test Requirement for Environmental Stress Screening of Satellite Components (인공위성 탑재품의 환경 스트레스 스크리닝을 위한 열환경시험 테일러링 연구동향 분석)

  • Ah-Jeong Seong;Shin-Mu Park;Hyun-Ung Oh;Kyun Ho Lee;Jae Hyuk Lim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.70-80
    • /
    • 2024
  • In this study, we explore the purpose, origin, and history of thermal testing in the development of artificial satellite components. We seek to understand precisely the test variables associated with thermal vacuum and thermal cycle tests, including temperature margins and cycle counts, which may differ according to the development model. We analyze specifications detailed in standards from NASA, ESA, MIL, and others. Furthermore, given the recent surge in interest in CubeSats and nanosatellites, this paper aims to identify research trends in customizing satellite development projects according to their budget and duration.

Development Trends of Thermal Control Design and Analysis of Robotic Arm Payload for Spacecraft (인공위성 로봇팔 탑재체의 열 제어 설계 및 해석 개발 동향 )

  • Han-Seop Shin;Hae-Dong Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.27-47
    • /
    • 2024
  • In the New space era, satellites are being developed to perform on-orbit service (OOS) missions. Various missions for orbital service include failure repair, refueling, towing, component replacement, and space construction, and in order to do so, a robot arm payload must be mounted. Unlike conventional satellite payloads, the robot arm payload is not move in a fixed state, but is a payload that must move continuously to perform the mission. It is also characterized by the need to perform the mission while being directly exposed to outer space, rather than existing inside the structure of the satellite. Due to the characteristics of these payloads, thermal design and interpretation that can be operated smoothly in an extreme space thermal environment is essential, but there are not many papers on thermal design and interpretation of the robot arm. This paper introduces and summarizes cases of thermal design and interpretation of robot arm payloads developed so far, and finally, it intends to suggest directions for thermal design and interpretation of robot arm payloads to be developed in the future.

A Study of Spacecraft Alignment Measurement with Theodolite (데오도라이트를 이용한 위성체 얼라인먼트 측정에 관한 연구)

  • Yun,Yong-Sik;Park,Hong-Cheol;Son,Yeong-Seon;Choe,Jong-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.105-111
    • /
    • 2003
  • A measurement of spacecraft alignment is an important process of spacecraft assembly, integration and test. Because, it is necessary that a operator of a ground station controls the precise positions of on-orbit spacecraft by using the alignment data of attitude orbit control sensors(AOCS) on spacecraft. And, an accuracy of spacecraft alignment requirement is about $0.1^{\circ}{\sim}0.7^{\circ}$. A spacecraft alignment is measured by autocollimation of theodolite. This paper describes the measurement principle and method of spacecraft alignment. The result shows that all the AOCS on the spacecraft are aligned within the tolerance required through the alignment measurement.

A Study on Accurate Alignment Measurement of Dual Thruster Module Using Theodolite (데오드라이트를 이용한 이중 추력기 모듈의 정밀정렬측정에 관한 연구)

  • Hwang, Kwon-Tae;Moon, Guee-Won;Cho, Chang-Lae;Lee, Dong-Woo;Lee, Sang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1399-1404
    • /
    • 2012
  • Because satellites operate in space, it is impossible to repair them when they malfunction. Therefore, to ensure the normal function of the payload used in the satellites, accurate assembly and installation of parts are crucial. To prevent abnormal functioning in the extreme environments during launch and in space, it is essential to test changes at the parts and system levels by performing alignment measurement before and after the launch environment test and the space environment test. Recently, noncontact three-dimensional precision machinery for medium- and large-sized parts has been developed. One of these is the theodolite measurement system, which is widely used in the aerospace industry. This study measures the angle of the dual thruster module that is used to control the attitude of KOMPSAT by using a theodolite, and alignment measurement and a reliability analysis are performed.