• Title/Summary/Keyword: 인공위성 구동기

Search Result 33, Processing Time 0.04 seconds

Fault Tolerant Attitude Control for a Spacecraft Using Reaction Wheels (반작용 휠을 사용하는 인공위성의 내고장 자세제어기법)

  • Jin, Jae-Hyun;Lee, Hun-Gu;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.526-532
    • /
    • 2007
  • This paper considers a fault tolerant control problem for a spacecraft using reaction wheels. Faults are assumed to be inherent to only actuators(reaction wheels) and a control algorithm to accommodate actuators' faults is proposed. An attitude control loop includes an angular velocity control loop. The time delay control method is used to make a spacecraft follow the command angular velocity and to accommodate actuators' faults. A stability condition for the proposed algorithm is derived and the performance is demonstrated by computer simulations.

A Study on the Verifying Structural Safety of Satellite Structure by Coupled Load Analysis (연성하중해석을 통한 위성구조체의 구조안정성 검증 연구)

  • Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Chang-Ho;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • Satellite structure should be designed to support safely the payload and several actuators under launch and on-orbit environments. After the configuration design of satellite, the structural analysis is performed using quasi-static load provided by launch vehicle manufacturer for detail design of satellite. In order to verify the safety of satellite structure designed using quasi-static loads, launch vehicle manufacturer performs coupled load analysis with satellite and launch vehicle models. For developing satellite, satellite model was reduced into the Craig-Bampton model for coupled load analysis, and delivered to the launch vehicle manufacturer. Launch vehicle manufacturer have done the coupled load analysis, and offered the acceleration and displacement results to the satellite manufacturer. From the analysis results, we have confirmed that satellite is designed safely and there is no possibility of interference and conflict in the inner/outer side of satellite.

Non-explosive separation device using screw jack mechanism (나사잭 메커니즘을 이용한 비폭발식 분리장치)

  • Park, Hyun-Jun;Lee, Min-Su;Jo, Jae-Wook;Kim, Byung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.321-326
    • /
    • 2010
  • The non-explosive release device using jack mechanism is designed and fabricated for the small satellite. As a triggering actuator for the release device, a piezo rotory motor with torque of more than $1.7kgf{\cdot}cm$ is employed to guarantee stable activation. For performance tests of separation device, we conducted release time test, preload test and shock test. The device was operated within 1.172sec and activated stably under load of 45kgf. Maximum shock was measured as 18G that is much less than the pyro-separation device produces. We confirmed the possibility as a satellite separation device through above presented tests.

Development of 0.6Nm Small CMG Hardware and Performance Test (0.6Nm급 소형 CMG 하드웨어 개발 및 성능시험)

  • Jang, Woo-Young;Rhee, Seung-Wu;Kwon, Hyoek-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.933-942
    • /
    • 2010
  • Control Moment Gyro(CMG) is one of the most efficient momentum exchange devices for satellite attitude control and CMG is very essential device for agile satellite. And the studies of CMG development and its application to satellite have been done extensively. In this study, the development process of SGCMG hardware for agile small satellite system, the developed hardware and its performance test results are presented. As a SGCMG test results, it is verified that the developed hardware model can produce torque more than 0.6Nm as is designed. By investigating its test data results, the issues that should be considered for the performance improvement and its application are discussed. The remedies for the identified issues are proposed for future study.

Analysis of Angular Velocity Stabilization of Spacecraft After One Control Moment Gyroscope's Failure (한 개의 제어모멘트자이로 고장에 따른 위성 각속도 안정화 분석)

  • Jin, Jaehyun;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.389-397
    • /
    • 2021
  • The control characteristics after the failure of the control moment gyros, the actuators for satellite attitude control, were analyzed. In particular, the situation where one out of four failed was considered. For the most commonly used pyramids and box-90 structures, the singularities and singular surfaces after failure were analyzed and compared. Dynamic equations for the process of reducing the wheel speed after the failure were derived. The process of stabilizing the angular velocity of a satellite while absorbing the momentum of the faulty module by the three normal modules was analyzed. For singular shapes, the remaining CMGs may be locked or excessively shake. The authors proposed that it can be prevented by rearranging the gimbal angles.

Performance Test and Characteristics Analysis of a Spherical Reaction Wheel (구체 반작용휠 구동기의 성능 시험 및 특성 분석)

  • Kim, Dae-Kwan;Yoon, Hyung-Joo;Kim, Yong-Bok;Kang, Woo-Yong;Choi, Hong-Taek
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.183-187
    • /
    • 2012
  • In the present study, a feasibility study on an innovative satellite attitude control actuator is performed. The actuator is specially designed to generate the reaction torque in an arbitrary axis, so that a satellite attitude can be controlled by using itself. It consists of a spherical flywheel and electromagnets for levitation and rotation control of the ball. As the earlier study, a rotating performance test on the spherical actuator is conducted in a single rotating axis and vertical levitation condition. From the test results, it can be confirmed that the maximum speed and torque of the innovative device are 7,200rpm and 0.7Nm, respectively. Using torque-voltage characteristics of the spherical motor, an open-loop control (V/f constant control) is performed, and the test results show excellent control performance in acceleration and deceleration phases.

  • PDF

Satellite finite element model updating for the prediction of the effect of micro-vibration (미소진동 영향성 예측을 위한 인공위성 유한요소모델 보정)

  • Lim, Jae Hyuk;Eun, Hee-Kwang;Kim, Dae-Kwan;Kim, Hong-Bae;Kim, Sung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.692-700
    • /
    • 2014
  • In this work, satellite FE (finite element) model updating for the prediction of the effect of micro-vibration is described. In the case of satellites launched in low earth orbit, high agility and more mission accomplishments are required by the customer in order to procure many images from satellites. To achieve the goal, many mechanisms, including high capacity wheels and antennas with multi-axis gimbals have been widely adopted, but they become a source of micro-vibration which could significantly deteriorate the quality of images. To investigate the effect due to the micro-vibration in orbit on the ground, a prediction is conducted through an integrated model coupling the measured jitter sources with FE (finite element) model. Before prediction, the FE model is updated to match simulation results with the modal survey test. Subsequently, the quality of FE model is evaluated in terms of frequency deviation error, the resemblance of mode shapes and FRFs (frequency response functions) between test and analysis.

Development of Xenon feed system for a 300 W Hall-effect Thruster (300 W급 홀 추력기를 위한 제논연료공급장치 개발)

  • Kim, Youn-Ho;Seon, Jong-Ho;Kang, Seong-Min;Wee, Jung-Hyun;Yoon, Ho-Sung;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.419-424
    • /
    • 2009
  • A Xenon feed system has been developed for a 300 W Hall-effect thruster intended for orbit maintenance of small satellite. The system can store about 2 kg of xenon gas at 150 bar and is capable of controlling the mass flow rate of the gas at 0.5 SCCM resolution. The performance of the system is verified with a laboratory experiment. It is confirmed that the operation of the feed system is successful at a pressure level of $1.0{\times}10^{-6}$ torr in the vacuum chamber.

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

진공용 베어링 개발

  • 이상기
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.42-42
    • /
    • 2000
  • 진공장비 내에서 사용되는 베어링에 있어서 그리이스나 오일은 중기압이 높아 장치내 진공도 저하뿐 아니라 처리되는 부품에 오염을 초래하게 되므로 많은 경우 진공 환경용 베어링은 전동면 또는 마찰면에 마찰계수가 매우 낮은 박막을 형성시켜 윤활을 실현한다. 진공용 베어링이 사용되는 곳은 인공위성의 안테나, 태양전지 전개 기구 및 회전부 등 우주항공 분야를 비롯하여, 상업적으로는 X-ray 발생장치, 반도체 등 전자소재 제조 장치의 구동부 및 각종 진공 증착 장치 등에 널리 사용되고 있다. 이러한 진공용 베어링은 일반 베어링의 수 천배에 달하는 고가로 그간 전량 수입에 의존하여 왔으며 근래에는 국내 전자 산업의 발전과 더불어 그 수요가 폭발적으로 증가하여 수입 비용의 부담도 크게 늘고 있다. 당사에서는 진공에서의 각종 요구특성에 대응한 베어링으로 연질금속계(Ag. Au, Pb) 황하물계(Mos2), 폴리머계(PTFE) 의 윤활 막을 코팅한 진공용 베어링을 개발하여 공급능력을 갖추었기에 이의 특징 및 용도를 소개하고자 한다.

  • PDF