• 제목/요약/키워드: 인공신경망 분석

검색결과 797건 처리시간 0.026초

인공신경망을 이용한 부실기업예측모형 개발에 관한 연구

  • 정윤;황석해
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.415-421
    • /
    • 1999
  • Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA: multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 둥이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation )알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉충의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적 중률을 나타내었다.

  • PDF

인공신경망을 이용한 부실기업예측모형 개발에 관한 연구

  • 정윤;황석해
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.415-421
    • /
    • 1999
  • Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA:multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 등이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적 요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation)알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉층의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.

  • PDF

인공신경망과 CAPPI 자료를 이용한 단기 강우예측 (Short-Term Rainfall Forecast Using Artificial Neural Network and CAPPI)

  • 지계환;오경두;안원식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.72-76
    • /
    • 2011
  • 본 연구는 레이더 강우 영상에서 추출된 강우 패턴을 인공신경망으로 처리하여 단기 강우 예측을 수행하는 방안을 제시한 것이다. 본 연구에 활용한 CAPPI 영상자료로는 편차 보정과 품질 관리가 이루어지고 있으며 획득이 용이한 기상청 자료를 이용하였으며 CAPPI의 PNG 영상으로부터 강우 패턴을 추출하고, 이를 역전파 알고리즘의 인공신경망 강우 예측 모형에 학습시켜 단기 강우를 예측하기 위한 절차를 제시하였다. 이를 위하여 강우의 시공간적 변화 패턴 추출을 위한 영상 처리와 GIS 자료처리 기법을 제시하였고 이를 인공신경망의 단기 강우 예측 학습과 검증에 적용하여 본 연구에서 제시된 기법의 타당성을 검토하였다.

  • PDF

인공신경망을 이용한 RC Mock-up 구조물의 단계별 손상탐지 (Staged Damage Detection of a RC Mock-up Structure by Artificial Neural Network)

  • 권흥주;김지영;유은종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.676-679
    • /
    • 2011
  • 인공신경망(Artificial Neural Network)을 이용하여 RC Mock-up 구조물의 손상위치 및 손상정도를 단계적으로 추정하였다. 대상 구조물은 가진실험을 통하여 구조물의 응답을 취득하고 구조물식별기법(Structural System Identification)을 통하여 구조물의 동특성을 찾았다. 유한요소해석프로그램을 사용하여 동특성이 계측치와 가장 유사한 기본해석모델을 만든 후 이 기본해석모델을 이용하여 학습데이터를 생성하였다. 기존 인공신경망을 이용한 손상탐지를 개선하고자 본 연구에서는 인공신경망 학습데이터를 분석하였고 효과적인 손상탐지를 위하여 학습데이터를 가공하였다. 가공된 학습데이터를 사용하여 단계별 손상탐지를 실시하였고 기존 손상탐지 방법보다 좋은 결과를 유도하였다.

  • PDF

ANN을 이용한 Radar 면적강우량의 정확도 향상 (Improve Acuracy of Rardar Areal Rainfall using Artificial Neural Network)

  • 김영일;최지안;김태순;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.37-41
    • /
    • 2009
  • 본 연구에서는 티센망을 이용한 면적강우량 산정방법의 대안으로서 최근 들어 수자원공학 분야에의 활용성이 커지고 있는 고해상도 기상레이더의 반사도자료(dBZ)를 활용하여 면적강우량을 산정하였다. 또한 이렇게 산정된 레이더 면적강우량을 티센망으로써 산정된 면적강우량과 비교하여 그 유용성을 판단하였다. 연구지역으로는 소양강댐 유역을 선정하였으며, 연구기간은 2008년 가장 강한 강우를 보였던 상위 5개의 사상을 선정하였다. 본 연구에서는 레이더 반사도를 강우강도로 변환시키는 과정은 인공신경망(artificial neural network, ANN) 중에서 일반적으로 널리 사용되고 있는 다층 퍼셉트론 인공신경망 모형을 적용하였다. 연구방법으로는 선택된 4개의 인자를 입력노드에 넣어 인공신경망을 학습시킨 후 연구지역 내 10개 AWS 지상관측소의 강우량을 추정하여 정확도를 비교 분석하였다. 이를 바탕으로 최종적으로 레이더 면적강우량을 산정하여 기존의 티센망을 이용한 면적강우량과 그 값을 비교하였다. 그 결과 인공신경망을 이용한 레이더 강우량의 경우, 평균제곱오차(mean square error, MSE) 및 상관계수(correlation coefficient, CC)가 매우 양호한 값을 보였다. 또한 유역 내 레이더 면적강우량이 티센망을 이용한 면적강우량에 비하여 약 $7%^{\sim}19%$ 정도 차이가 발생함을 확인하였으며, 레이더 면적강우량이 티센망을 이용한 면적강우량에 비하여 더 정확한 면적강우량을 산정할 수 있다고 판단된다.

  • PDF

인공신경망을 이용한 숫자 인식 시스템 개발 (Development of neumerical recognition system using artificial neural network)

  • 정채은;김병욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.29-32
    • /
    • 2019
  • 인공신경망은 인간의 신경세포인 뉴런을 모델로서 사용했다. 인간은 외부에서 오는 정보를 뇌에서 받아들이고 판단한다. 받아들인 정보를 통해 어떻게 산출할 것인지에 대한 일들을 기능하게 된다. 그러한 일련의 과정을 필기체 숫자 데이터를 통하여 사람이 유도하는 예측 값을 인식해내고, 학습된 예측 값을 실제 값과 비교해 분석하였다. 그리고 더 나아가 인공신경망에 대해 어떻게 응용할 것인지 논의하였다.

데이터 마이닝을 이용한 리튬 이차전지의 전류밀도 영향인자 분석 (Design Analysis of Current Density in Lithium Secondary Battery Using Data Mining Techniques)

  • 정동호;이종수;최하영
    • 대한기계학회논문집A
    • /
    • 제38권6호
    • /
    • pp.677-682
    • /
    • 2014
  • 본 연구에서는 데이터 마이닝의 방법인 의사결정나무와 인공신경망을 이용하여 리튬 이차전지의 전류밀도 특성에 대해 핵심 설계 인자를 도출하고 비교하였다. 먼저 의사결정나무-인공신경망 모델을 이용한 설계방법으로, 비선형성을 나타내는 초기 극판 설계인자들 중에 의사결정나무 모델을 통해 주요 설계 인자를 도출한 다음 인공신경망을 이용하여 설계인자들 간의 중요도와 전류밀도와의 가중치 분석을 수행하였다. 두 번째 방법은 인공신경망 모델만을 이용한 방법으로, 초기 설계인자들을 별도의 주요 인자 도출 과정 없이 모두 인공신경망을 구축하는데 사용하여 전류밀도와의 연관성 및 가중치를 분석하였다.

인공신경망을 이용한 터널시공에서 현장 적용성 (Site Application of Artificial Neural Network for Tunnel Construction)

  • 송주현;채휘영;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제13권8호
    • /
    • pp.25-33
    • /
    • 2012
  • 터널 설계 시 해당지반에 관한 정보를 정확히 반영하는 것은 대단히 중요하다. 하지만 다양한 지형 및 지질조건을 모두 고려한 지반조사 및 시험 등은 경제적, 기술적으로 인하여 현실적으로 실시하기 어렵기 때문에 한정된 정보에 의하여 해석 및 설계를 하고 있는 실정이다. 본 연구는 도심지 및 산악지역 터널공사 시, 보다 정확한 안정성 검토 및 거동 예측을 수행하여 선정 결과에 대한 현장 적용성 여부를 판단하기 위해 인공신경망 이론의 적용을 통하여 기존 거동예측의 한계성을 극복하고자 하였다. 먼저, 현장 데이터를 확보하여 인공신경망 중 다층퍼셉트론을 연구에 적합한 구조로 구축하고, 역전파 알고리즘으로 학습시켜 적용하였다. 인공신경망을 이용한 현장적용성의 학습을 위한 자료는 터널의 지보패턴, RMR, Q, 암종, 굴진장, 굴착형태, 굴착경과일 등 터널거동에 영향을 미치는 영향인자를 고려하여 신뢰성 분석을 실시하고 선별된 계측자료의 결과를 데이터베이스화하여 사용하였다. 학습이 완료된 인공신경망 모델을 이용하여 터널시공현장의 굴착경과일에 따른 천단변위, 내공변위, 지중변위, 록볼트축력을 예측하고 현장 계측치와 비교분석을 통하여 인공신경망을 이용한 터널 시공 시 현장적용성을 확인하였다.

다목적댐 유입량 예측을 위한 Recurrent Neural Network 모형의 적용 및 평가 (Application of recurrent neural network for inflow prediction into multi-purpose dam basin)

  • 박명기;윤영석;이현호;김주환
    • 한국수자원학회논문집
    • /
    • 제51권12호
    • /
    • pp.1217-1227
    • /
    • 2018
  • 본 연구에서는 순환신경망을 이용한 댐 유입량 예측모형의 적용성 검토를 목적으로 하고 있으며, 이를 위해 소양강댐 유역 및 충주댐 유역을 대상으로 그간 댐 운영을 통해 축적된 기상 및 수문 빅데이터를 활용하여 인공신경망 모형과 엘만 순환신경망 모형을 구축하였다. 모형의 학습과 예측을 위하여 유역별 유입량, 강우량, 기온, 일조시간, 풍속자료가 입력자료로 사용되었고 10일간 일별 댐유입량 자료가 모델의 출력자료로 구조화 하여 학습을 진행한 후 검증을 목적으로 2016년 7월 ~ 2018년 6월까지 2개년에 대한 댐 유입량 예측을 수행하였다. 학습된 모형의 유입량 예측 결과를 비교분석한 결과, 소양강댐 유역에서는 인공신경망 모형과 순환신경망 모형 간 예측성능은 큰 차이를 보이지 않았으며, 충주댐 유역에서는 순환신경망 모형의 예측 결과가 인공신경망 모형에 비해 비교적 우수한 성능을 보임에 따라 엘만 순환신경망을 이용하여 댐 유입량 예측모형을 구축할 경우 예측성능은 기존의 인공신경망 모형과 비슷하거나 다소 우수할 것으로 판단된다. 또한 엘만 순환신경망은 갈수기 댐 유입량 예측에 있어서 인공신경망에 비해 예측결과의 재현성이 우수한 것으로 나타났으며, 엘만 순환신경망 학습에 있어 다중 은닉층 구조가 단일 은닉층 구조보다 예측 성능 향상에 효과적인 것으로 분석되었다.

임베디드 보드에서의 인공신경망 압축을 이용한 CNN 모델의 가속 및 성능 검증 (Acceleration of CNN Model Using Neural Network Compression and its Performance Evaluation on Embedded Boards)

  • 문현철;이호영;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.44-45
    • /
    • 2019
  • 최근 CNN 등 인공신경망은 최근 이미지 분류, 객체 인식, 자연어 처리 등 다양한 분야에서 뛰어난 성능을 보이고 있다. 그러나, 대부분의 분야에서 보다 더 높은 성능을 얻기 위해 사용한 인공신경망 모델들은 파라미터 수 및 연산량 등이 방대하여, 모바일 및 IoT 디바이스 같은 연산량이나 메모리가 제한된 환경에서 추론하기에는 제한적이다. 따라서 연산량 및 모델 파라미터 수를 압축하기 위한 딥러닝 경량화 알고리즘이 연구되고 있다. 본 논문에서는 임베디트 보드에서의 압축된 CNN 모델의 성능을 검증한다. 인공지능 지원 맞춤형 칩인 QCS605 를 내장한 임베디드 보드에서 카메라로 입력한 영상에 대해서 원 CNN 모델과 압축된 CNN 모델의 분류 성능과 동작속도 비교 분석한다. 본 논문의 실험에서는 CNN 모델로 MobileNetV2, VGG16 을 사용했으며, 주어진 모델에서 가지치기(pruning) 기법, 양자화, 행렬 분해 등의 인공신경망 압축 기술을 적용하였을 때 원래의 모델 대비 추론 시간 및 분류의 정확도 성능을 분석하고 인공신경망 압축 기술의 유용성을 확인하였다.

  • PDF