• 제목/요약/키워드: 인공신경망 모델

검색결과 810건 처리시간 0.024초

젯슨 나노 기반의 차량 추적 캔위성 시스템 개발 (Development of CanSat System for Vehicle Tracking based on Jetson Nano)

  • 이영건;이상현;유승훈;이상구
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.556-558
    • /
    • 2022
  • 본 논문에서는 인공지능 알고리즘을 운용할 수 있는 고성능 소형 컴퓨터인 젯슨 나노를 기반으로 차량 추적 기능을 가진 캔위성 시스템을 제안한다. 캔위성 시스템은 캔위성과 지상국으로 구성되며, 캔위성은 대기권 내에서 낙하하며 장착된 센서를 통해 얻은 데이터를 무선통신을 이용해 지상국으로 전송한다. 기존 캔위성은 단순히 수집된 정보를 지상국에 전송하는 임무로 제한되며, 제한된 낙하 시간과 무선통신의 대역폭 제한으로 효율적인 임무 수행에는 한계가 있었다. 본 논문에서 제안하는 젯슨 나노 기반의 캔위성은 사전에 학습된 신경망 모델을 이용하여 공중에서 촬영한 영상에서 차량의 위치를 실시간으로 탐지 후, 2축 모터를 이용하여 카메라를 움직여 차량을 추적한다.

  • PDF

Proposal of a Hypothesis Test Prediction System for Educational Social Precepts using Deep Learning Models

  • Choi, Su-Youn;Park, Dea-Woo
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권9호
    • /
    • pp.37-44
    • /
    • 2020
  • AI 기술은 법률, 특허, 금융, 국방의 의사결정지원 기술 형태로 발전하여 질병 진단과 법률 판정 등에 적용되고 있다. Deep Learning으로 실시간 정보를 검색하려면, Big data Analysis과 Deep Learning Algorithm이 필요하다. 본 논문에서는 Deep Learning 모델인 RNN(Recurrent Neural Network)을 이용하여 상위권 대학 진학률을 예측하고자 한다. 우선, 행정구역 사설학원 현황과 행정구역 연령별 학생 수를 분석하고 교육열이 높은 지역에 거주하는 학생이 상위권 대학 진학률이 높다는 사회 통념의 가설을 설정했다. 예측된 가설과 정부의 공공데이터를 활용하여 분석된 자료를 토대로 검증하고자 한다. 예측모델은 2015년부터 2017년까지의 데이터를 활용하여 상위권 진학률을 예상하도록 학습하고, 학습된 모델은 2018년 상위권 진학률을 예측한다. 교육특구지역의 상위권 진학률을 Deep Learning 모델인 RNN을 이용하여 예측 실험을 수행했다. 본 논문은 교육열이 높은 지역의 사설학원 현황, 연령별 학생 수에 미치는 영향에 대해서 가구소득, 사교육의 참여 비율을 분석하여 상위권 진학률의 상관관계를 정의한다.

2D-QSAR방법을 이용한 농약류의 무지개 송어 급성 어독성 분석 및 예측 (Prediction and analysis of acute fish toxicity of pesticides to the rainbow trout using 2D-QSAR)

  • 송인식;차지영;이성광
    • 분석과학
    • /
    • 제24권6호
    • /
    • pp.544-555
    • /
    • 2011
  • 본 연구는 농약류에 대하여 구조-활성의 정량적 관계(QSAR)를 이용하여 무지개 송어(학명: Oncorhynchus mykiss)의 급성 독성을 예측-분석하는 과정을 수행하였다. 모델 구현을 위해 사용된 275종의 농약류에 대한 수중 독성(96h $LC_{50}$) 값은 DEMETRA프로젝트의 데이터를 사용하였다. 예측 모델에 사용된 2차원 분자 표현자는 PreADMET프로그램으로부터 계산을 하였고, 선형 (다중 선형 회귀 방법)모델과 비선형(서포트 벡터 머신, 인공 신경망) 학습 방법들은 실험값과 예측값의 적합도를 고려하여 최적화 되었다. 데이터 전처리 과정을 거친 뒤에, 5묶음 교차 검증과정을 포함한 모집단 기반 전진 선택법을 통해서 각 학습 방법의 최적의 표현자 집합을 결정하였다. 가장 좋은 결과는 SVM 방법 ($R^2_{CV}$=0.677, RMSECV=0.887, MSECV=0.674) 이었고, EU의 규제 기준에 따른 분류에서는 87%의 정확도를 나타내었다. MLR방법을 통해서는 무지개 송어의 급성 독성에 대하여 독성을 나타내는 농약류의 구조적 특징과 지질 층과의 상호작용을 설명할 수 있었다. 개발된 모든 모델들은 5묶음 교차 검증과 Y-scrambling test을 통해 검증되었다.

머신 러닝과 데이터 전처리를 활용한 증류탑 온도 예측 (Prediction of Distillation Column Temperature Using Machine Learning and Data Preprocessing)

  • 이예찬;최영렬;조형태;김정환
    • Korean Chemical Engineering Research
    • /
    • 제59권2호
    • /
    • pp.191-199
    • /
    • 2021
  • 화학 공정의 주요 설비 중 하나인 증류탑은 물질들의 끓는점 차이를 이용하여 혼합물에서 원하는 생산물을 분리하는 설비이며 증류 공정은 많은 에너지가 소비되기 때문에 최적화 및 운전 예측이 필요하다. 본 연구의 대상 공정은 공급처에 따라 원료의 조성이 일정하지 않아 정상 상태로 운전이 어려워 효율적인 운전이 어렵다. 이를 해결하기 위해 데이터 기반 예측 모델을 이용하여 운전 조건을 예측 할 수 있다. 하지만 미가공 공정 데이터에는 이상치 및 노이즈가 포함되어 있어 예측 성능을 향상시키기 위해 데이터 전처리가 필요하다. 본 연구에서는 인공 신경망 모델인 Long short-term memory (LSTM)과 Random forest (RF)를 사용하여 모델을 최적화한 후, 데이터 전처리 방법으로 Low-pass filter와 One-class support vector machine을 사용하여 데이터 전처리 방법 및 범위에 따른 예측 성능을 비교하였다. 각 모델의 예측 성능과 데이터 전처리의 영향은 R2과 RMSE를 사용하여 비교하였다. 본 연구의 결과, 전처리를 통해 LSTM의 경우 R2은 0.791에서 0.977으로 RMSE는 0.132에서 0.029로 각각 23.5%, 78.0% 향상되었고, RF의 경우 R2은 0.767에서 0.938으로 RMSE는 0.140에서 0.050으로 각각 22.3%, 64.3% 향상되었다.

확률적 모델예측제어를 이용한 물리기반 제어기 지도 학습 프레임워크 (A Supervised Learning Framework for Physics-based Controllers Using Stochastic Model Predictive Control)

  • 한다성
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 2021
  • 본 논문에서는 확률적 모델예측제어(model predictive control) 기법을 이용하여 예제 동작 데이터가 주어지면 물리 기반 시뮬레이션 환경에서 그 동작을 모방할 수 있는 캐릭터 동작 제어기를 빠르게 학습할 수 있는 간편한 지도 학습(supervised learning) 프레임워크를 제안한다. 제안된 프레임워크는 크게 학습 데이터 생성과 오프라인 학습의 두 컴포넌트로 구성된다. 첫번째 컴포넌트는 예제 동작 데이터가 주어지면 확률적 모델예측제어를 통해 그 동작 데이터를 추적하기 위한 최적 제어기를 캐릭터의 현재 상태로부터 시작하여 가까운 미래 상태까지의 시간 윈도우에 대해 주기적으로 업데이트하면서 그 최적 제어기를 통해 캐릭터의 동작을 확률적으로 제어한다. 이러한 주기적인 최적 제어기의 업데이트와 확률적 제어는 주어진 예제 동작 데이터를 모방하는 동안 캐릭터가 가질 수 있는 다양한 상태들을 효과적으로 탐색하게 하여 지도 학습에 유용한 학습 데이터를 수집할 수 있게 해준다. 이렇게 학습 데이터가 수집되면, 오프라인 학습 컴포넌트에서는 그 수집된 데이터를 정규화 시켜서 데이터에 내제된 크기와 단위의 차이를 조정하고 지도 학습을 통해 제어기를 위한 간단한 구조의 인공 신경망을 학습시킨다. 걷기 동작과 달리기 동작에 대한 실험은 본 논문에서 제안한 학습 프레임워크가 물리 기반 캐릭터 동작 제어기를 빠르고 효과적으로 생성할 수 있음을 보여준다.

79종의 임플란트 식별을 위한 딥러닝 알고리즘 (Deep learning algorithms for identifying 79 dental implant types)

  • 공현준;유진용;엄상호;이준혁
    • 구강회복응용과학지
    • /
    • 제38권4호
    • /
    • pp.196-203
    • /
    • 2022
  • 목적: 본 연구는 79종의 치과 임플란트에 대해 딥러닝을 이용한 식별 모델의 정확도와 임상적 유용성을 평가하는 것을 목적으로 하였다. 연구 재료 및 방법: 2001년부터 2020년까지 30개 치과에서 임플란트 치료를 받은 환자들의 파노라마 방사선 사진에서 총 45396개의 임플란트 고정체 이미지를 수집했다. 수집된 임플란트 이미지는 18개 제조사의 79개 유형이었다. 모델 학습을 위해 EfficientNet 및 Meta Pseudo Labels 알고리즘이 사용되었다. EfficientNet은 EfficientNet-B0 및 EfficientNet-B4가 하위 모델로 사용되었으며, Meta Pseudo Labels는 확장 계수에 따라 두 가지 모델을 적용했다. EfficientNet에 대해 Top 1 정확도를 측정하고 Meta Pseudo Labels에 대해 Top 1 및 Top 5 정확도를 측정하였다. 결과: EfficientNet-B0 및 EfficientNet-B4는 89.4의 Top 1 정확도를 보였다. Meta Pseudo Labels 1은 87.96의 Top 1 정확도를 보였고, 확장 계수가 증가한 Meta Pseudo Labels 2는 88.35를 나타냈다. Top 5 정확도에서 Meta Pseudo Labels 1의 점수는 97.90으로 Meta Pseudo Labels 2의 97.79보다 0.11% 높았다. 결론: 본 연구에서 임플란트 식별에 사용된 4가지 딥러닝 알고리즘은 모두 90%에 가까운 정확도를 보였다. 임플란트 식별을 위한 딥러닝의 임상적 적용 가능성을 높이려면 더 많은 데이터를 수집하고 임플란트에 적합한 미세 조정 알고리즘의 개발이 필요하다.

군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템 구축 방안 연구 (A Study on the Establishment of Comparison System between the Statement of Military Reports and Related Laws)

  • 정지인;김민태;김우주
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.109-125
    • /
    • 2020
  • 군(軍)에서 방위력개선사업(이하 방위사업)은 매우 투명하고 효율적으로 이루어져야 함에도, 방위사업 관련 법 및 규정의 과도한 다양화로 많은 실무자들이 원활한 방위사업 추진에 어려움을 겪고 있다. 한편, 방위사업 관련 실무자들이 각종 문서에서 다루는 법령 문장은 문장 내에서 표현 하나만 잘못되더라도 심각한 문제를 유발하는 특징을 가지고 있으나, 이를 실시간으로 바로잡기 위한 문장 비교 시스템 구축에 대한 노력은 미미했다. 따라서 본 논문에서는 Siamese Network 기반의 자연어 처리(NLP) 분야 인공 신경망 모델을 이용하여 군(軍)의 방위사업 관련 문서에서 등장할 가능성이 높은 문장과 이와 관련된 법령 조항의 유사도를 비교하여 위법 위험 여부를 판단·분류하고, 그 결과를 사용자에게 인지시켜 주는 '군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템' 구축 방안을 제안하려고 한다. 직접 제작한 데이터 셋인 모(母)문장(실제 법령에 등장하는 문장)과 자(子)문장(모(母)문장에서 파생시킨 변형 문장) 3,442쌍을 사용하여 다양한 인공 신경망 모델(Bi-LSTM, Self-Attention, D_Bi-LSTM)을 학습시켰으며 1 : 1 문장 유사도 비교 실험을 통해 성능 평가를 수행한 결과, 상당히 높은 정확도로 자(子)문장의 모(母)문장 대비 위법 위험 여부를 분류할 수 있었다. 또한, 모델 학습에 사용한 자(子)문장 데이터는 법령 문장을 일정 규칙에 따라 변형한 형태이기 때문에 모(母)·자(子)문장 데이터만으로 학습시킨 모델이 실제 군(軍) 보고서에 등장하는 문장을 효과적으로 분류한다고 판단하기에는 제한된다는 단점을 보완하기 위해, 실제 군(軍) 보고서에 등장하는 형태에 보다 더 가깝고 모(母)문장과 연관된 새로운 문장 120문장을 추가로 작성하여 모델의 성능을 평가해본 결과, 모(母)·자(子)문장 데이터만으로 학습시킨 모델로도 일정 수준 이상의 성능을 확인 할 수 있었다. 결과적으로 본 연구를 통해 방위사업 관련 군(軍) 보고서에서 등장하는 여러 특정 문장들이 각각 어느 관련 법령의 어느 조항과 가장 유사한지 살펴보고, 해당 조항과의 유사도 비교를 통해 위법 위험 여부를 판단하는 '실시간 군(軍) 문서와 관련 법령 간 자동화 비교 시스템'의 구축 가능성을 확인할 수 있었다.

Sentienl-1 SAR 영상을 활용한 유류 분포특성과 CNN 구조에 따른 유류오염 탐지모델 성능 평가 (Evaluation of Oil Spill Detection Models by Oil Spill Distribution Characteristics and CNN Architectures Using Sentinel-1 SAR data)

  • 박소연;안명환;이성뢰;김준우;전현균;김덕진
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1475-1490
    • /
    • 2021
  • SAR 이미지의 통계적 특징을 이용하여 유류오염영역을 특정하는 방법은 분류규칙이 복잡하고 이상값에 의한 영향을 많이 받는다는 한계가 있어, 최근 인공신경망을 기반으로 유류오염영역을 특정하는 연구가 활발히 이루어지고 있다. 하지만, 다양한 유류오염 사례에 대해 모델의 탐지 성능 및 특성을 평가한 연구는 부족하였다. 따라서, 본 연구에서는 기본적인 구조의 CNN인 Simple CNN과 픽셀 단위의 영상 분할이 가능한 U-net을 이용하여, CNN의 구조와, 유류오염의 분포특성에 따른 모델의 탐지성능차이가 존재하는지 분석하였다. 연구결과, 축소경로만 존재하는Simple CNN과 축소경로와 확장경로가 모두 존재하는U-net의 F1 score는 86.24%와 91.44%로 나타나, 두 모델 모두 비교적 높은 탐지 정확도를 보여주었지만, U-net의 탐지성능이 더 높은 것으로 나타났다. 또한 다양한 유류오염 사례에 따른 모델의 성능 비교를 위해, 유류오염의 공간적 분포특성(유류오염 주변의 육지의 분포)과 선명도(유출된 기름과 해수의 경계면이 뚜렷한 정도)를 기준으로, 유류오염 발생사례를 4가지 유형으로 구분하여 탐지 정확도를 평가하였다. Simple CNN은 각각의 유형에 대해 F1 score가 85.71%, 87.43%, 86.50%, 85.86% 로 유형별 최대 편차가 1.71%인 것으로 나타났으며, U-net은 동일한 지표에 대해 89.77%, 92.27%, 92.59%, 92.66%의 F1 score를 보여 최대 편차가 2.90% 로 두 CNN모델 모두 유류오염 분포특성에 따른 수치상 탐지성능의 차이는 크지 않은 것으로 나타났다. 하지만 모든 유류오염 유형에서 Simple CNN은 오염영역을 과대탐지 하는 경향을, U-net은 과소탐지 하는 경향을 보여, 모델의 구조와 유류오염의 유형에 따라 서로 다른 탐지 특성을 가진다는 것을 확인하였고, 이러한 특성은 유류오염과 해수의 경계면이 뚜렷하지 않은 경우 더 두드러지게 나타났다.

비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델 (A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs)

  • 원하람;심재승;안현철
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.127-137
    • /
    • 2019
  • 재범예측은 70년대 이전부터 전문가들에 의해서 꾸준히 연구되어온 분야지만, 최근 재범에 의한 범죄가 꾸준히 증가하면서 재범예측의 중요성이 커지고 있다. 특히 미국과 캐나다에서 재판이나 가석방심사 시 재범 위험 평가 보고서를 결정적인 기준으로 채택하게 된 90년대를 기점으로 재범예측에 관한 연구가 활발해졌으며, 비슷한 시기에 국내에서도 재범요인에 관한 실증적인 연구가 시작되었다. 지금까지 대부분의 재범예측 연구는 재범요인 분석이나 재범예측의 정확성을 높이는 연구에 집중된 경향을 보이고 있다. 그러나 재범 예측에는 비대칭 오류 비용 구조가 있기 때문에 경우에 따라 예측 정확도를 최대화함과 동시에 예측 오분류 비용을 최소화하는 연구도 중요한 의미를 가진다. 일반적으로 재범을 저지르지 않을 사람을 재범을 저지를 것으로 오분류하는 비용은 재범을 저지를 사람을 재범을 저지르지 않을 것으로 오분류하는 비용보다 낮다. 전자는 추가적인 감시 비용만 증가되는 반면, 후자는 범죄 발생에 따른 막대한 사회적, 경제적 비용을 야기하기 때문이다. 이러한 비대칭비용에 따른 비용 경제성을 반영하여, 본 연구에서 비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측모델을 제안한다. 모델의 첫 단계에서 최근 데이터 마이닝 분야에서 높은 성능으로 각광받고 있는 앙상블 기법, XGBoost를 적용하였고, XGBoost의 결과를 로지스틱 회귀 분석(Logistic Regression Analysis), 의사결정나무(Decision Trees), 인공신경망(Artificial Neural Networks), 서포트 벡터 머신(Support Vector Machine)과 같은 다양한 예측 기법과 비교하였다. 다음 단계에서 임계치의 최적화를 통해 FNE(False Negative Error)와 FPE(False Positive Error)의 가중 평균인 전체 오분류 비용을 최소화한다. 이후 모델의 유용성을 검증하기 위해 모델을 실제 재범예측 데이터셋에 적용하여 XGBoost 모델이 다른 비교 모델 보다 우수한 예측 정확도를 보일 뿐 아니라 오분류 비용도 가장 효과적으로 낮춘다는 점을 확인하였다.

MCC의 부유부상 효율에 미치는 MCC의 표면에너지와 액상의 표면장력의 영향에 대한 기초연구

  • 이학래;이진희;박일;이용민;한신호;조중연
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2001년도 추계학술발표논문집
    • /
    • pp.20-20
    • /
    • 2001
  • 우리나라 제지산업은 화학펼프의 80%를 수입에 의존하고 었으나 고지회수율 및 이용율이 세계적으로 볼 때 매우 높은 환경친화적 산업이다. 고지 재활용 공정 중에 서 가장 핵심적인 공정인 부유부상 공정은 고상계의 표면특성 차이를 이용하여 소수성 의 잉크업자를 기포에 부착시켜 부상을 통하여 제거하는 공정이다. 고지 사용의 고도화 를 위해서는 부유부상 공정의 효율 증대가 절실히 요구되고 있다. 또한 부유부상 공정 의 핵심적인 인자로 부유부상을 통하여 제거되는 고형물질의 표면 특성 특히 소수화도 가 중요하다는 것은 보고된 바 있으나 부유부상에 필요한 표면 특성의 존재 여부와 표 면 에너지와 부유부상 효율의 관계 등에 관한 기본적인 연구가 더욱 필요한 실정이다. 이에 본 연구에서는 부유부상 공정을 기초과학적 측면에서 규명하기 위해 마 이 크로 크리 스탈린 셀룰로오스(Microcrystalline cellulose: MCC)를 모델 물질로 사용하 고 이들의 표면특성을 접촉각 측정을 통하여 평가하였다. 친수성의 표면 특성을 지닌 M MCC의 표면 특성을 소수성으로 바꾸기 위하여 AKD(alkyl ketene dimer)의 함량별로 사이징 처리하여 소수성을 지닌 잉크를 모벨링 하고 친수성 MCC를 염색시약을 이용 하여 흑색으로 염색함으로써 소수화 된 MCC와의 색차를 두어 섬유를 모델링 하였다. 이렇게 제조된 MCC의 소수화 정도를 평가하기 위하여 분말상태인 MCC를 pellet으로 제조하여 각기 다른 표면장력과 표변특성을 지난 용액을 이용하여 Advancing Contact A Angle을 측정하고 다양한 방법으로 이를 분석하여 시료의 표면에너지를 평가하였다 그 리고 부유부상 셀내의 액상의 이온강도와 표면장력 등 화학적인 인자에 의한 부유부상 분리효과를 평가하였다.있었다 (그림 2). 칼렌다는 종이를 높은 전단력과 압축력으로 변형시키는데 비해 도침은 단순히 압축 압력만을 종이에 가하는 것이 다르다고 볼 수 있는데, 라 이너지와 백상지가 같은 조건하에서 왜 이러한 큰 차이를 보이는 이유를 아직 알수 없다.해 동일한 공정 데이터들올 이용하여 보편적으로 사용하는 통계기법 중의 하나인 주성분회귀분석을 실시하였다. 주성분 분석은 여러 개의 반응변수에 대하여 얻어진 다변량 자료의 다차원적인 변 수들을 축소, 요약하는 차원의 단순화와 더불어 서로 상관되어있는 반응변수들 상호간 의 복잡한 구조를 분석하는 기법이다. 본 발표에서는 공정 자료를 활용하여 인공신경망 과 주성분분석을 통해 공정 트러블의 발생에 영향 하는 인자들을 보다 현실적으로 추 정하고, 그 대책을 모색함으로써 이를 최소화할 수 있는 방안을 소개하고자 한다.금 빛 용사 둥과 같은 표면처리를 할 경우임의 소재 표면에 도금 및 용 사에 용이한 재료를 오버레이용접시킨 후 표면처리를 함으로써 보다 고품질의 표면층을 얻기위한 시도가 이루어지고 있다. 따라서 국내, 외의 오버레이 용접기술의 적용현황 및 대표적인 적용사례, 오버레이 용접기술 및 용접재료의 개발현황 둥을 중심으로 살펴봄으로서 아직 국내에서는 널리 알려지지 않은 본 기 술의 활용을 넓이고자 한다. within minimum time from beginning of the shutdown.및 12.36%, $101{\sim}200$일의 경우 12.78% 및 12.44%, 201일 이상의 경우 13.17% 및 11.30%로 201일 이상의 유기의 경우에만 대조구와 삭제 구간에 유의적인(p<0.05) 차이를 나타내었다.는 담수(淡水)에서 10%o의 해수(海水)로 이주된지 14일(日) 이후에 신장(腎臟)에서 수축된

  • PDF