• Title/Summary/Keyword: 인공벌 군집

Search Result 8, Processing Time 0.024 seconds

Improved Artificial Bee Clustering (ABC) Algorithm for Solving Consistency Problems in SDN Distributed Controllers (SDN 분산 컨트롤러에서 일관성 문제 해결을 위한 향상된 인공벌 군집(ABC) 알고리즘)

  • Yoo, Seung-Eon;Lym, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.145-146
    • /
    • 2018
  • 중앙 집중적인 단일 컨트롤러를 이용할 경우 메시지 과부하로 인해 응답이 지연될 수 있으므로 스위치들이 기존의 컨트롤러를 대신하여 새로운 컨트롤러와 연결되어 트래픽을 처리하는 다중 컨트롤러가 효율적이다. 본 논문에서는 SDN 분산 컨트롤러에서 일관성 문제를 해결하기 위해 우선순위에 기반을 둔 향상된 인공벌 군집(ABC) 알고리즘을 제안한다.

  • PDF

Selection of controller using improved Artificial Bee Colony algorithm based on Apriori algorithm in SDN environment (SDN 환경에서 Apriori 알고리즘 기반의 향상된 인공벌 군집(ABC) 알고리즘을 이용한 컨트롤러 선택)

  • Yoo, Seung-Eon;Lim, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.39-40
    • /
    • 2019
  • 본 논문에서는 연관규칙 마이닝 알고리즘인 Apriori 알고리즘을 기반으로 향상된 인공벌 군집 알고리즘(ABC algorihtm)을 적용하여 SDN 환경에서 분산된 컨트롤러를 선택하는 모델을 제안하였다. 이를 통해 자주 사용되는 컨트롤러를 우선적으로 선택함으로써 향상된 컨트롤러 선택을 목표로 한다.

  • PDF

Flora and Vegetation Structure in a 15-Year-Old Artificial Wetland (조성 후 15년이 경과한 인공습지의 식물상과 식생구조)

  • Son, Deokjoo;Lee, Hyohyemi;Lee, Eun Ju;Cho, Kang-Hyun;Kwon, Dongmin
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.54-63
    • /
    • 2015
  • This study was conducted to investigate the flora and vegetation structure at a 15-year-old artificial wetland for the water purification in Jincheon, Korea. The percentage of species number of obligate wetland plants and facultative wetland plants totaled 40%, whereas that of obligate upland plants and facultative upland plants was 57%. This result showed that the artificial wetland in the study experienced terrestrialization. The number of annual and biennial plants that are pioneer vegetation in a successional stage was lower than that of perennial herbs as a result of the long-term stabilization of vegetation. From the results of DCA (detrended correspondence analysis), water depth played an important role on the classification of vegetation structure in an old artificial wetland. Species diversity was higher in the terrestrialized plant communities such as Iris pseudacorus and Aster koraiensis than in any other wetland communities. Plant communities could be classified according to the wetland indices; obligate upland for A. koraiensis community, facultative wetlands for Carex dispalata var. dispalata and I. pseudacorus community, and obligate wetlands for Nymphoides peltata, Nymphaea tetragona, Phragmites communis, Potamogeton maackianus, and Typha angustifolia community. In conclusion, this result suggests that wetland vegetation should be maintained against terrestrialization through the proper management of sedimentation and hydrological regime in an artificial wetland.

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.

A Hybrid Search Method Based on the Artificial Bee Colony Algorithm (인공벌 군집 알고리즘을 기반으로 한 복합탐색법)

  • Lee, Su-Hang;Kim, Il-Hyun;Kim, Yong-Ho;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.213-217
    • /
    • 2014
  • A hybrid search method based on the artificial bee colony algorithm (ABCA) with harmony search (HS) is suggested for finding a global solution in the field of optimization. Three cases of the suggested algorithm were examined for improving the accuracy and convergence rate. The results showed that the case in which the harmony search was implemented with the onlooker phase in ABCA was the best among the three cases. Although the total computation time of the best case is a little bit longer than the original ABCA under the prescribed conditions, the global solution improved and the convergence rate was slightly faster than those of the ABCA. It is concluded that the suggested algorithm improves the accuracy and convergence rate, and it is expected that it can effectively be applied to optimization problems with many design variables and local solutions.

Ranking Artificial Bee Colony for Design of Wireless Sensor Network (랭킹인공벌군집을 적용한 무선센서네트워크 설계)

  • Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.87-94
    • /
    • 2019
  • A wireless sensor network is emerging technology and intelligent wireless communication paradigm that is dynamically aware of its surrounding environment. It is also able to respond to it in order to achieve reliable and efficient communication. The dynamical cognition capability and environmental adaptability rely on organizing dynamical networks effectively. However, optimally clustering the cognitive wireless sensor networks is an NP-complete problem. The objective of this paper is to develop an optimal sensor network design for maximizing the performance. This proposed Ranking Artificial Bee Colony (RABC) is developed based on Artificial Bee Colony (ABC) with ranking strategy. The ranking strategy can make the much better solutions by combining the best solutions so far and add these solutions in the solution population when applying ABC. RABC is designed to adapt to topological changes to any network graph in a time. We can minimize the total energy dissipation of sensors to prolong the lifetime of a network to balance the energy consumption of all nodes with robust optimal solution. Simulation results show that the performance of our proposed RABC is better than those of previous methods (LEACH, LEACH-C, and etc.) in wireless sensor networks. Our proposed method is the best for the 100 node-network example when the Sink node is centrally located.

Cell Grouping Design for Wireless Network using Artificial Bee Colony (인공벌군집을 적용한 무선네트워크 셀 그룹핑 설계)

  • Kim, Sung-Soo;Byeon, Ji-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.46-53
    • /
    • 2016
  • In mobile communication systems, location management deals with the location determination of users in a network. One of the strategies used in location management is to partition the network into location areas. Each location area consists of a group of cells. The goal of location management is to partition the network into a number of location areas such that the total paging cost and handoff (or update) cost is a minimum. Finding the optimal number of location areas and the corresponding configuration of the partitioned network is a difficult combinatorial optimization problem. This cell grouping problem is to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking is a minimum in location area wireless network. In fact, this is shown to be an NP-complete problem in an earlier study. In this paper, artificial bee colony (ABC) is developed and proposed to obtain the best/optimal group of cells for location area planning for location management system. The performance of the artificial bee colony (ABC) is better than or similar to those of other population-based algorithms with the advantage of employing fewer control parameters. The important control parameter of ABC is only 'Limit' which is the number of trials after which a food source is assumed to be abandoned. Simulation results for 16, 36, and 64 cell grouping problems in wireless network show that the performance of our ABC is better than those alternatives such as ant colony optimization (ACO) and particle swarm optimization (PSO).

Combined Artificial Bee Colony for Data Clustering (융합 인공벌군집 데이터 클러스터링 방법)

  • Kang, Bum-Su;Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • Data clustering is one of the most difficult and challenging problems and can be formally considered as a particular kind of NP-hard grouping problems. The K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, it has high possibility to trap in local optimum and high variation of solutions with different initials for the large data set. Therefore, we need study efficient computational intelligence method to find the global optimal solution in data clustering problem within limited computational time. The objective of this paper is to propose a combined artificial bee colony (CABC) with K-means for initialization and finalization to find optimal solution that is effective on data clustering optimization problem. The artificial bee colony (ABC) is an algorithm motivated by the intelligent behavior exhibited by honeybees when searching for food. The performance of ABC is better than or similar to other population-based algorithms with the added advantage of employing fewer control parameters. Our proposed CABC method is able to provide near optimal solution within reasonable time to balance the converged and diversified searches. In this paper, the experiment and analysis of clustering problems demonstrate that CABC is a competitive approach comparing to previous partitioning approaches in satisfactory results with respect to solution quality. We validate the performance of CABC using Iris, Wine, Glass, Vowel, and Cloud UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KABCK (K-means+ABC+K-means) is better than ABCK (ABC+K-means), KABC (K-means+ABC), ABC, and K-means in our simulations.