• Title/Summary/Keyword: 인공발파

Search Result 45, Processing Time 0.021 seconds

Discrimination between Earthquake and Man-made Blast (지진과 인공발파의 식별)

  • 전명순;전정수;제일영
    • Explosives and Blasting
    • /
    • v.18 no.3
    • /
    • pp.83-88
    • /
    • 2000
  • 국내 지진관측소로부터 분석된 지진기록에는 자연지진 이외의 상당수의 인공발파를 포함하는 것으로 해석된다. 자연지진에 대한 지진특성연구, 지질학적 지진의 진원지연구 등을 위 해서는 지진목록에서 인공발파를 식별할 필요가 있다. 한국자원연구소는 인공발파 식별을 위한 연구의 일환으로 지진-공중음파 관측망을 운영 중에 있다. 지진-공중음파 자료분석으로 구분된 인공발파 기록의 대부분이 발파를 실시하는 산업현장과 일치하고 있음이 확인되었다. 발파장의 위치, 발파시간, 규모 및 발파방법 등의 정보는 공중음파를 이용한 인공발파 식별에 관한 정량적 연구와 자연지진에 관한 연구 등에 기본적인 정보(Ground Truth Database)를 제공하리라 판단되므로 국내에서 실시되는 인공발파에 대한 정보가 요구된다.

  • PDF

Evaluation of Blast Velocity by Artificial Joint Conditions using Numerical Analysis (수치해석을 이용한 인공절리 조건에 따른 발파속도 평가)

  • Suk, Chul-Gi;Noh, You-Song;Park, Hoon
    • Explosives and Blasting
    • /
    • v.35 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • This study undertakes an evaluation of blast effect through the analysis of the contribution rate and effect that different artificial joint number, artificial joint spacing and artificial joint angle have on blast velocity. Blast velocity according to the different state of the artificial joint was obtained using AUTODYN, a dynamic analysis program. The result of the numerical analysis was subjected to further normalization analysis. For the contribution rate of design factors was analyzed using the robust design method. The orthogonal array used in the analysis was $L_9(3^4)$ and each parameters were having 3 levels. The result of normalization analysis regarding the artificial joint angle was indicated a tendency in which blast velocity decreased. The result of analyzing blast velocity regarding artificial joint spacing and artificial joint angle was indicated a tendency in which blast velocity decreased as artificial joint spacing increased when the angle was perpendicular. In the case of blast velocity contribution rates they were ranked in the descending order of artificial joint angle, artificial joint number, artificial joint spacing.

Review of the Application of Artificial Intelligence in Blasting Area (발파 분야에서의 인공지능 활용 현황)

  • Kim, Minju;Ismail, L.A.;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.44-64
    • /
    • 2021
  • With the upcoming 4th industrial revolution era, the applications of artificial intelligence(AI) and big data in engineering are increasing. In the field of blasting, there have been various reported cases of the application of AI. In this paper, AI techniques, such as artificial neural network, fuzzy logic, generic algorithm, swarm intelligence, and support vector machine, which are widely applied in blasting area, are introduced, The studies about the application of AI for the prediction of ground vibration, rock fragmentation, fly rock, air overpressure, and back break are surveyed and summarized. It is for providing starting points for the discussion of active application of AI on effective and safe blasting design, enhancing blasting performance, and minimizing the environmental impact due to blasting.

A Comparison of Ground Vibration in Center Cut Blasting using Artificial Joints (인공절리를 이용한 심발 발파에서의 지반진동 비교)

  • Park, Hoon;Suk, Chul-Gi;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.16-25
    • /
    • 2018
  • In order to reduce ground vibration during tunnel excavation, a free surface blasting method has been applied in which a partial free surface is formed on the excavation surface and controlled blasting is performed. In this study, the ground vibration reduction due to artificial joints was evaluated by forming artificial joints on center cut using diamond wire saw and comparing the ground vibration caused by center cut blasting. As a result of comparison, ground vibration was reduced by artificial joints center cut blasting more than normal center cut blasting, and the ground vibration reduction effect of horizontal artificial joints center cut blasting was evaluated more than that of vertical artificial joint center cut blasting.

Evaluation of Blast influence by Artificial Joint in Concrete Block (콘크리트 블록에서 인공절리에 따른 발파영향 평가)

  • Noh, You-Song;Min, Gyeong-Jo;Oh, Se-Wook;Park, Se-Woong;Suk, Chul-Gi;Cho, Sang-Ho;Park, Hoon
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • This study was conducted to evaluate the influences of the angle of artificial joints, the distance between the artificial joints and the blast hole, and the number of artificial joints on the pressure wave propagation, crack propagation, and blast wave velocity. The evaluation was conducted numerically by use of the Euler-Lagrange solver supported by the AUTODYN, which is a dynamic FEM program. As a result, it was found that the blast wave velocity was decreased most rapidly as either the distance between the artificial joint and the blast hole was decreased or the angle of the artificial joint was increased. In contrast to the case of no artificial joint, the amount of attenuation of the blast wave velocity was considerably large when an artificial joint was present. However, the effect of the number of artificial joint on the attenuation of the blast wave velocity was negligible under the given condition.

A Study on the Effect of Artificial Cutting Slot on the Fragmentation and Vibration Propagation in the Full-scaled Concrete Block Blasting (콘크리트 블록 발파 실험을 통한 인공 슬롯 자유면이 진동전파 및 파쇄효과에 미치는 영향에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Noh, You-Song;Suk, Chul-Gi;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.692-705
    • /
    • 2018
  • Ground vibration is one of the remarkable issues in tunnel blasting. In recent studies, to improve the fragmentation with reduction of ground vibration in tunnel blasting, a vibration-controlled blasting method with artificial cutting slot near the center-cut holes has been suggested. This study examines the effect of the different arrangement of artificial cut-slot on the vibration reduction and fragmentation by performing the full-scaled concrete block blast experiments and the numerical simulations with 3D-DFPA. The results show that the existence of artificial slot contributes to the improvement of vibration reduction, blast fragmentation and the efficiency of the cutting slot blast. It can be explained that the artificial slot play a free surface role and should decrease the burden between the cut holes. Crater volumes of the blasted concrete blocks were measured by 3-dimensional digital image analysis and compared with the ideal standard crater volume which can be calculated by theoretical standard blast design method. As a result, the ratio of burden and hole diameter which should achieve the standard crater in the cut-hole blasting were suggested.

Evaluation of Rock Fragmentation due to Artificial Joint Effect (인공절리에 의한 암석의 파쇄도 평가)

  • Noh, You-Song;Suk, Chul-Gi;Park, Hoon
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • Since the rock fragmentation by blasting can affect the subsequent processes including loading, hauling and secondary crushing, its control is essential for the assessment of blasting efficiency as well as production cost. In this study, we were analyzed the rock fragmentation by the direction of artificial joint. The underground blasting experiments were performed after forming the vertical and horizontal artificial joints. The blast fragmentation was conducted by the split-desktop which is a 2D image processing program. As a result, it was found that the horizontal artificial joint was evaluated to have lower overall the size of muck pile than the vertical artificial joint and the distribution of the size of muck pile was varied. It is possible that the direction of artificial joint could suppress the occur of oversize muck pile and control to a certain size or less.

Certifying the Characteristics of Artificial Explosion Sounds Traveled through Underground Bedrock Medium (지하 암반 매질을 통과한 인공발파음 특성 규명)

  • Yoon, Sang-Hoon;Bae, Myung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.844-850
    • /
    • 2008
  • This paper stated the proposed algorithm to certify the characteristics of artificial explosion sounds traveled through underground bedrock medium. Artificial explosion that travel through underground bedrock had an attenuation within high frequency bands in increase of a distance with multiple transmission paths phenomenon and inhomogeneity of geological status. In this paper, explosion experiment was made in underground tunnel to verify efficiency of proposed algorithm. The could certify the characteristics of artificial explosion sounds as extracted and numerically quantified the characterized parameter with collected sound sample that traveled through underground bedrock channel.

A Case Study on a Large Scale Borehole Test Blasting to Generate Man-made Earthquake (인공지진 발생을 위한 대규모 시추공 시험발파 사례연구)

  • Jeong, Ju-Hwan;Choi, Byung-Hee;Ryu, Chang-Ha;Min, Hyung-Dong;Choi, Hyung-Bin
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.48-55
    • /
    • 2009
  • In the process of identifying the earth's crust structures to accurately locate the seismic epicenter, man-made earthquakes need to be generated. Such a large-scale ground vibration can be generated by a deep borehole blasting, but it can also accompany some environmental impacts on the surroundings. In this respect, a borehole test blasting was carried out to determine the maximum charge weight that could be used without affecting the various structures around the blast site. Total 400kg of gelatine-type dynamites was used in the test blast. As a result, a prediction equation for ground vibrations was derived from the measured data. With the allowable level of 3.0 mm/s for residential structures, the maximum charge weight was determined to be 677kg if military structures near the site were considered. But if the military structures were not considered, it was found that up to 2100kg of explosives could be used without affecting old houses in the nearby village.