• Title/Summary/Keyword: 인공경량 골재

Search Result 130, Processing Time 0.028 seconds

Engineering Properties of Surlightweight Polymer Concrete (초경량 폴리머 콘크리트의 공학적 특성)

  • 성찬용;김경태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.75-81
    • /
    • 1997
  • This study was performed to evaluate the engineering properties of surlightweight polymer concrete using synthetic lightweight aggregate. The following conclusions were drawn; 1. The unit weight was in the range of 0.849~0.969t/$m^3$, the unit weights of those concrete were decreased by 58 ~ 63% than that of the normal cement concrete. 2. The highest strength was achieved by $P_1$, and compressive strength was increased by 93% and bending strength by 364% than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2, 346~2, 702m/s, which was low compared to that of the normal cement concrete. 4. The dynamic modulus of elasticity was in the range of $1.561{\times} 10{^5}~1.916{\times} 10{^5}kgf/cm^2$, which was approximately 52~98% of that of the normal cement concrete. 5. The compressive and bending strength were increased with the increase of unit weight. But, the dynamic modulus of elasticity and ultrasonic pulse velocity were decreased with the increase of unit weight.

  • PDF

A Study on Application of Ready Mixed Concrete of Lightweight Aggregate using Rubbish (폐분진을 이용한 인공경량골재콘크리트의 레미콘 적용 연구)

  • Noh Youn Sun;Ji Suk Won;Seo Chee ho;Lee Jae Sam;Jee Suck Won;Lee Seung Yeun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.427-430
    • /
    • 2005
  • The purpose of this study is to choose the right chemical admixture to reduce slump loss of lightweight aggregate concrete. So we compare 3 types of chemical admixture as measuring slump loss from mixing to 60 minutes. The lightweight aggregate of this study is made by clayt and dust from lots of industry. To save natures, we will use many types of industrial wastes and try to spend much making artificial aggregate.

  • PDF

Manufacturing of Lightweight Aggregate using Sewage Sludge by a Pilot Plant(10ton/day) (Pilot Plant(10톤/일)를 이용한 하수슬러지 인공경량골재의 제조)

  • Mun, Kyoung-Ju;Lee, Hwa-Young;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.117-120
    • /
    • 2006
  • The purpose of this study is to efficiently treat the sewage sludge discharged from sewage treatment plants and evaluate the feasibility of the manufacture of lightweight aggregates(LWA) using a large quantity of sewage sludge. Sintered lightweight aggregate from sewage sludge is experimentally manufactured with various mass ratios of clay to sewage sludge by a pilot plant, and is tested for density, water absorption and crushing value. Their physical properties are compared to those of a commercial sintered lightweight aggregate. As a result, an experimentally manufactured lightweight aggregate is similar or superior in physical properties to the commercial lightweight aggregate. The manufactured lightweight aggregate could be used for structural concrete and non-structural concrete.

  • PDF

The Experimental Study on the Characteristics of Absorption on the Pressurization of Lightweight Aggregate (인공경량골재의 가압시 흡수특성에 관한 실험적 연구)

  • Kim, Sang-Heon;Park, Dae-Oh;Ji, Suk-Won;Seo, Chee-Ho;Lee, Jae-Sam;Jee, Suck-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.121-124
    • /
    • 2006
  • Lightweight aggregate is mainly consist of multi-crystalline structure. It may be abnormal water moving by the change of external circumstance because of its specific portion being between components and aperture. So it has some difficulty in forming without concise method about absorbing character and water-containing point even though it is used to water-containing condition over the 24 hours of absorbing amount in present. This study has main idea on the characteristics of absorption on the pressurization of lightweight aggregate.

  • PDF

The High-Strengthening of Concrete with Admixture - On the Artificial Lightweight Aggregate Concrete- (혼화재에 의한 콘크리트의 고강도화에 관한 실험 연구(II) -인공경량골재 콘크리트를 대상으로-)

  • 김화중;김태섭;이용철;박정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.118-123
    • /
    • 1993
  • The purpose of this study is to put to practical use the economical high-strength lightweight concrete manufactured by domestic materials, through the analysis on the properties of lightweight concrete with the natural zeolite and mud stone abundant in domestic and compare them with those with silica fume. As a result, it was possible to gain proper workability in the lightweight concrete with admixtures through using the superplasticizer. the optimum replacement rate of zeolite and mud stone powder is respectively 5~10%, 10~15% on unit-cement amount. The strength development rate for plain concrete is 27%, 18% at optimum replacement rate.

  • PDF

Applicability of inorganic waste as binder at manufacturing of Light weight aggregates using high content sewage sludge (하수슬러지 인공경량골재 제조를 위한 무기계 폐기물의 점결제 적용성 평가)

  • Kim, Dug-Mo;Mun, Kyoung-Ju;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.157-160
    • /
    • 2005
  • The purpose of this study is to efficiently treat the sewage sludge discharged from sewage treatment plants and evaluate the feasibility of the manufacture of lightweight aggregates(LWA) using a large quantity of sewage sludge and inorganic waste binder ;f1y-ash, waste-stone, tailing, phosphogypsum. Then they were burned in different soak temperatures from 1190$^{circ}C$ to 1290$^{circ}C$ with fixed soak time and heating rate at 5 minutes and 20$^{circ}C$/min respectively in order to produce lightweight aggregate (LWA). Experiment were generated to evaluate the quality of LWA as well as the relationship between burning condition and product's quality.

  • PDF

A Study on Application of Ready Mixed Concrete of ECO Lightweight Aggregate using Sewage Sludge (하수 슬러지를 이용한 친환경인공경량골재콘크리트의 레미콘 적용 연구)

  • Seo Chi ho;Ji Seok Won;Lee Seung Yeun;Jee Suk Won;Lee Jae Sam;Lee Jin Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.109-112
    • /
    • 2005
  • As civilization progresses amount of sewage sludge continues to increase from a sewage disposal plant with a huge expenditure of water resources. So It is necessary to reduce the high costs of sewage disposal and the pollution of the environment and also a unit cost of artificial lightweight aggregate by continual recycling. The purpose of this study is to put artificial lightweight aggregate concrete to practical use by using sewage sludge and clay

  • PDF

An Experimental Study on The Differential Dry Shrinkage of Concrete Using Artificial Lightweight Aggregate (인공 경량골재를 사용한 콘크리트의 부등 건조수축에 관한 실험적 연구)

  • Lee, Chang-soo;Kim, Young-ook;Lin, Yan
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.1
    • /
    • pp.78-90
    • /
    • 2010
  • Exposure to the outside, the concrete is differential moisture distribution depending on the depth. Such a differential moisture distribution causes the differential drying shrinkage in concrete structures. This thesis is researched to compare the shrinkage of lightweight concrete depending on depth to normal concrete. It is used artificial lightweight aggregate which has 20% of pre-absorb value by lightweight concrete. When water-binder ratio is 30%, average shrinkage of lightweight concrete section decreased than normal concrete, but differential shrinkage of lightweight concrete section increased. However water-binder ratio is 40% and 50% average shrinkage and differential shrinkage of lightweight concrete section decreased than normal concrete.

An Experimental Study on the Development of Lightweight Concrete (경량콘크리트의 개발에 관한 실험적 연구)

  • 김성완;성찬용;민정기;정현정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.90-100
    • /
    • 1995
  • This study was performed to develop the lightweight concrete using synthetic lightweight aggregate and natural coarse aggregate. Mixing ratios were three types, the first type was mixed cement and synthetic lightweight fine aggregate (Type CP), the second type was mixed cement, synthetic lightweight fine aggregate and synthetic lightweight coarse aggregate (Type CPE), the third type was mixed cement, synthetic lightweight fine aggregate and natural coarse aggregate (Type CPN). The results of this study are summarized as follows ; 1. The W/C of each mixing ratio was increased with increase of the amount of cement used, and it was shown higher in order of Type CP, CPN, CPE. 2. The unit weight of Type CP, CPE and CPN was 1.473~1.647g/cm$^3$, 1.467~1.622g/cm$^3$ and 1.658~1 .838g/cm$^3$, respectively. And the absorption ratio was approximately 20%, which was higher than that of the normal cement concrete. 3. The compressive strength of Type CP was shown 178 ~249kg/cm2, Type CPE was shown 149~241kg/cm$^2$ and Type CPN was shown 196~297kg/cm$^2$, respectively. Each strength ratio was smaller than that of the normal cement concrete. 4. The pulse velocity of Type CP, CPE and CPN was 2, 688~3, 240m/sec, 2, 981~3, 324m/sec and 2, 989 ~ 3, 545m/sec, respectively. And it was increased with increase of strength and unit weight. 5. The length change ratio at 28 days was in the range of 0.057~0.077%, and earlier length change ratio was higher than that of the later.

  • PDF

Engineering Properties of Synthetic Lightweight Aggregate Concrete Affected by Alkali-Silica Reaction (알카리-실리카 반응(反應)에 의한 인공경량골재(人工輕量骨材)콘크리트의 공학적(工學的) 성질(性質))

  • Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.1
    • /
    • pp.33-40
    • /
    • 1991
  • This study was performed to obtain the basic data applied to use of synthetic lightweight aggregate concrete affected by alkali silica reaction. The results obtained were summarized as follows; 1. The compressive strength of type A concrete was increased with increase of curing age. At the curing age 28 days, the highest compressive strength was showed at type Band C concrete, respectively. But, it was gradually decreased with increase of curing age at those concrete. 2. The flexural strength of type A concrete was increased with increase of curing age. At the curing age 14 days, the highest flexural strength was showed at type Band C concrete, respectively. But, it was gradually decreased with increase of curing age at those concrete. 3. The correlation between compressive and flexural strength of the sample was shown highly significant only at type A concrete. 4. It was shown that the water absorptions of the type Band C were 7.0-7.8 times higher than the type A concrete. It was significantly higher at the early stage of immersed time at all sample. 5. The correlation between compressive strength and water absorption of the sample was significant only at the type A concrete.

  • PDF