• 제목/요약/키워드: 인간 손가락 모델

검색결과 7건 처리시간 0.017초

3차원 손 모델링 기반의 실시간 손 포즈 추적 및 손가락 동작 인식 (Real-Time Hand Pose Tracking and Finger Action Recognition Based on 3D Hand Modeling)

  • 석흥일;이지홍;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권12호
    • /
    • pp.780-788
    • /
    • 2008
  • 손 포즈 모델링 및 추적은 컴퓨터 시각 분야에서 어려운 문제로 알려져 있다. 손 포즈 3차원 복원을 위한 방법에는 사용되는 카메라의 수에 따라 다중 카메라 또는 스테레오 카메라 기반 방식과 단일카메라 기반 방식이 있다. 다중 카메라의 경우 여러 대의 카메라를 설치하거나 동기화를 시키는 등에 대한 제약사항이 따른다. 본 논문에서는 확률 그래프 모델에서 신뢰 전파 (Belief Propagation) 알고리즘을 이용하여 단안 카메라에서 획득된 2차원 입력 영상으로부터 3차원 손 포즈를 추정하는 방법을 제안한다. 또한, 은닉 마르코프 모델(Hidden Markov Model)을 인식기로 하여 손가락 클릭 동작을 인식한다. 은닉 노드로 손가락의 관절 정보를 표현하고, 2차원 입력 영상에서 추출된 특징을 관측 노드로 표현한 확률 그래프 모델을 정의한다. 3차원 손 포즈 추적을 위해 그래프 모델에서의 신뢰 전파 알고리즘을 이용한다. 신뢰 전파 알고리즘을 통해 3차원 손 포즈를 추정 및 복원하고, 복원된 포즈로부터 손가락의 움직임에 대한 특징을 추출한다. 추출된 정보는 은닉 마르코프 모델의 입력값이 된다. 손가락의 자연스러운 동작을 위해 본 논문에서는 한 손가락의 클릭 동작 인식에 여러 손가락의 움직임을 함께 고려한다. 제안한 방법을 가상 키패드 시스템에 적응한 결과 300개의 동영상 테스트 데이타에 대해 94.66%의 높은 인식률을 보였다.

손가락 움직임 인식을 위한 웨어러블 디바이스 설계 및 ML 기법별 성능 분석 (Design and Performance Analysis of ML Techniques for Finger Motion Recognition)

  • 정우순;이형규
    • 한국산업정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.129-136
    • /
    • 2020
  • 손가락 움직임 인식을 통한 제어는 직관적인 인간-컴퓨터 상호작용 방법의 하나이다. 본 연구에서는 여러 가지 ML (Machine learning) 기법을 사용하여 효율적인 손가락 움직임 인식을 위한 웨어러블 디바이스를 구현한다. 움직임 인식을 위한 시계열 데이터 분석에 전통적으로 사용되어 온 HMM (Hidden markov model) 및 DTW (Dynamic time warping) 기법뿐만 아니라 NN (Neural network) 기법을 적용하여 손가락 움직임 인식의 효율성 및 정확성을 비교하고 분석한다. 제안된 시스템의 경우, 경량화된 ML 모델을 설계하기 위해 각 ML 기법에 대해 최적화된 전처리 프로세스를 적용한다. 실험 결과, 최적화된 NN, HMM 및 DTW 기반 손가락 움직임 인식시스템은 각각 99.1%, 96.6%, 95.9%의 정확도를 제공한다.

손의 외곽선 추출에 의한 실시간 제스처 인식 (Real-Time Gesture Recognition Using Boundary of Human Hands from Sequence Images)

  • 이인호;박찬종
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1999년도 추계학술대회 논문집
    • /
    • pp.438-442
    • /
    • 1999
  • 제스처 인식은 직관적일 뿐 아니라, 몇 가지의 기본 구성요소에 의하여 코드화(code)가 용이하여, 인간과 컴퓨터의 상호작용(HCI, Human-Computer Interaction)에 있어서 폭넓게 사용되고 있다. 본 논문에서는 손의 모양이나 크기와 같은 개인차 및 조명의 변화나 배율과 같은 입력환경의 영향을 최소화하여, 특별한 초기화 과정이나 모델의 준비과정 없이도 제스처를 인식할 수 있고, 적은 계산량으로 실시간 인식이 가능한 제스처 인식 시스템의 개발을 목표로 한다. 본 논문에서는 손에 부착하는 센서나 마커 없이, CCD 카메라에 의하여 입력된 컬러영상에서, 컬러정보 및 동작정보를 이용하여 손영역을 추출하고, 추출된 손의 경계선 정보를 이용하여 경계선-중심 거리 함수를 생성했다. 그리고, 손가락의 끝 부분에서는 경계선-중심 거리가 극대점을 이룬다는 원리를 이용하여 생성된 함수의 주파수를 분석하여 극대점을 구함으로써 각각의 손가락 끝 위치를 찾고, 손의 자세를 인식하여 제스처를 인식했다. 또한 본 논문에서 제안된 제스처 인식 방법은 PC상에서 구현되어 그 유용성과 실효성이 증명되었다.

  • PDF

와이어형 형상기억합금 구동기를 이용한 인체 손가락 모델에 대한 연구 (A Study on the Human Finger Model using Wire-type SMA Actuator)

  • 정진우;임수철;박영필;양현석;박노철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.891-894
    • /
    • 2005
  • This paper describes a human finger model driven by shape memory alloy(SMA) wires. The finger model has three joints that are similar to human finger. Each joint is actuated with two wires in the antagonistic manner and six wires are used to actuate three finger joint. In order to obtain the desirable finger motion, the diameters of the SMA wires are designed with different diameters by considering the required actuating force and response time. The rotary sensors are used to measure the angle positions of the joints and PWM control using PID algorithm is used to achieve desired angle positions of the finger joints. After estimating the control performance of each finger joint for the desired angle position, the antagonistic motion control of the finger model is experimentally evaluated.

  • PDF

관절 기반의 모델을 활용한 강인한 손 영역 추출 (Robust Hand Region Extraction Using a Joint-based Model)

  • 장석우;김설호;김계영
    • 한국산학기술학회논문지
    • /
    • 제20권9호
    • /
    • pp.525-531
    • /
    • 2019
  • 인간과 컴퓨터 사이의 보다 자연스러운 상호적인 인터페이스를 효과적으로 구현하기 위해서 사람의 제스처를 활용하려는 노력이 최근 들어 지속적으로 시도되고 있다. 본 논문에서는 연속적으로 입력되는 3차원의 깊이 영상을 받아들여서 손 모델을 정의하고, 정의된 손 모델을 기반으로 사람의 손 영역을 강인하게 추출하는 알고리즘을 제시한다. 본 논문에서 제시된 알고리즘에서는 먼저 21개의 관절을 사용하여 손 모델을 정의한다. 본 논문에서 정의한 손 모델은 6개의 손바닥 관절을 포함하는 손바닥 모델과 15개의 손가락 관절을 포함하는 손가락 모델로 구성된다. 그런 다음, 입력되는 3차원의 깊이 영상을 적응적으로 이진화함으로써, 배경과 같은 비관심 영역들은 제외하고, 관심 영역인 사람의 손 영역만을 정확하게 추출한다. 실험 결과에서는 제시된 알고리즘이 연속적으로 입력되는 깊이 영상으로부터 배경과 같은 영역들은 제외하고 사람의 손 영역만을 기존의 알고리즘에 비해 약 2.4% 보다 강인하게 검출한다는 것을 보여준다. 본 논문에서 제안된 손 영역 추출 알고리즘은 제스처 인식, 가상현실 구현, 3차원 운동 게임, 수화 인식 등과 같은 컴퓨터 비전 및 영상 처리와 관련된 여러 가지의 실제적인 분야에서 유용하게 활용될 것으로 기대된다.

결합된 파티클 필터에 기반한 강인한 3차원 손 추적 (Robust 3D Hand Tracking based on a Coupled Particle Filter)

  • 안우석;석흥일;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권1호
    • /
    • pp.80-84
    • /
    • 2010
  • 손 추적 기술은 인간과 기계와의 효율적인 의사소통을 위한 손동작 인식 기술의 핵심 기반 기술이다. 최근의 손 추적 연구는 3차원 손 모델을 이용한 연구 방향에 초점을 맞추고 있고, 기존의 2차원 손 모델을 이용한 방법보다 강인한 추적 성능을 보이고 있다. 본 논문에서는 결합된 파티클 필터에 기반한 새로운 3차원 손 추적 방법을 제안한다. 이는 전역적 손 형상과 지역적 손가락 움직임을 분리하여 추정하고, 각각의 추정 결과를 서로의 사전 정보로 이용하여 기존의 방법보다 빠르고 강인한 추적을 가능하게 한다. 또한, 추적 성능 향상을 위해 색상과 에지를 함께 고려한 다중 증거 결합 방법을 적용한다. 실험결과, 제안하는 방법은 복잡한 배경이나 동작에서도 강인한 추적 결과를 보였다.

상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구 (A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle)

  • 김준섭;림빈 보니카;성낙준;홍민
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.17-23
    • /
    • 2020
  • 인간의 특성과 관련된 측정 항목을 나타내는 생체정보는 도난이나 분실의 염려가 없으므로 높은 신뢰성을 가진 보안 기술로서 큰 주목을 받고 있다. 이러한 생체정보 중 지문은 본인 인증, 신원 파악 등의 분야에 주로 사용된다. 신원을 파악할 때 지문 이미지에 인증을 수행하기 어려운 상처, 주름, 습기 등의 문제가 있을 경우, 지문 전문가가 전처리단계를 통해 직접 지문에 어떠한 문제가 있는지 파악하고 문제에 맞는 영상처리 알고리즘을 적용해 문제를 해결한다. 이때 지문에 상처와 주름이 있는 지문 영상을 판별해주는 인공지능 소프트웨어를 구현하면 손쉽게 상처나 주름의 여부를 확인할 수 있고, 알맞은 알고리즘을 선정해 쉽게 지문 이미지를 개선할 수 있다. 본 연구에서는 이러한 인공지능 소프트웨어의 개발을 위해 캄보디아 왕립대학교의 학생 1,010명, Sokoto 오픈 데이터셋 600명, 국내 학생 98명의 모든 손가락 지문을 취득해 총 17,080개의 지문 데이터베이스를 구축했다. 구축한 데이터베이스에서 상처나 주름이 있는 경우를 판별하기 위해 기준을 확립하고 전문가의 검증을 거쳐 데이터 어노테이션을 진행했다. 트레이닝 데이터셋과 테스트 데이터셋은 캄보디아의 데이터, Sokoto 데이터로 구성하였으며 비율을 8:2로 설정했다. 그리고 국내 학생 98명의 데이터를 검증 데이터 셋으로 설정했다, 구성된 데이터셋을 사용해 Classic CNN, AlexNet, VGG-16, Resnet50, Yolo v3 등의 다섯 가지 CNN 기반 아키텍처를 구현해 학습을 진행했으며 지문의 상처와 주름 판독에서 가장 좋은 성능을 보이는 모델을 찾는 연구를 수행했다. 다섯가지 아키텍처 중 지문 영상에서 상처와 주름 여부를 가장 잘 판별할 수 있는 아키텍처는 ResNet50으로 검증 결과 81.51%로 가장 좋은 성능을 보였다.