• Title/Summary/Keyword: 익형각

Search Result 2, Processing Time 0.017 seconds

Effect of Blade Angles on a Micro Axial-Type Turbine Operated in a Low Partial Admission Rate (부분분사 마이크로 축류형터빈에서의 익형각 효과에 관한 연구)

  • Cho, Soo-Yong;Cho, Bong-Soo;Cho, Chong-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2007
  • A tested micro axial-type turbine consists of two stages and its mean radius of rotor flow passage is 8.4 mm. This turbine could be applied to a driver of micro power system, and its rotational speed in the unloaded state reaches to 100,000 RPM. The performance of this system is sensitive depending on the blade angles of the rotor and stator because it is operated in a low partial admission rate, so a performance test is conducted through measuring the specific output power and the net specific output torque with various blade angles on the nozzle, stator and rotor. The experimental results show that the net specific output torque is varied by 15% by changing the rotor blade angle, and the optimal incidence angle is about $10.3^{\circ}$.

An Experimental Study of the Performance on a Rotating Turbine with Various incidences (터빈입사각에 따른 회전하는 터빈의 성능에 관한 실험적 연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.94-102
    • /
    • 2004
  • An experimental study on a rotating turbine is conducted with various incidence angles in order to find an optimum incidence angle. The incidence angle is an important design parameter in turbine blade design. however, most of experiments were conducted in a linear or annual cascade row. The suggested incidence angles from the experiments conducted in cascade rows could be unsuitable as a design parameter in the design of rotating parts. In this study, various incidence angles are applied and the turbine performance is measured in a rotating state. Experimental results show that the incidence on the rotor has a great influence on the turbine efficiency. The range of applicable incidence becomes narrow when the turbine operates at high input power. In the case of the tested rotor, the optimum incidence is about $-12^{\circ}$.