• Title/Summary/Keyword: 익스플리시트

Search Result 5, Processing Time 0.024 seconds

Analysis of crack growth by modified Gurson model (수정 Gurson 모델을 이용한 균열성장 해석)

  • Yang Seung-Yong;Goo Byeong-choon;Kim Jae-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.702-709
    • /
    • 2004
  • Modified Gurson model (Gurson-Tvergaard-Needleman model) was used to analyze crack growth in M(T) and C(T) specimens. A commercial finite element code ABAQUS/Explicit is used to account for total failure of material point by cavity coalescence, and crack growth was simulated by finite element extinction. Crack growth resistance curve was obtained by calculating J-integral. Crack growth under residual stress was investigated.

  • PDF

Prediction of Lift Performance of Automotive Glass Using Finite Element Analysis (유한요소해석을 통한 자동차용 글라스의 승강성능 예측)

  • Moon, Hyung-Il;Kim, Heon-Young;Choi, Cheon;Lee, In-Heok;Kim, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1749-1755
    • /
    • 2010
  • The performance of power window system was decided by driving characteristics of the window regulator part and reaction by the glass run. The performance of power window system usually has been predicted by experimental methods. In this paper, an analytical method using the explicit code was suggested to overcome the limit of the experimental methods. The friction coefficient of glass run was obtained by the friction test at various conditions and the Mooney-Rivlin model was used. Also, a mechanism of window regulator consisted of the fast belt system and the slip ring elements. And, we conducted the analysis considering characteristic of a motor and obtained the lifting speed of automotive glass with high reliability

Finite Element Analysis for Die Compaction Process of Cemented Carbide Tool Parts (초경공구 성형을 위한 금형압축공정)

  • Hyun ChungMin;Kwon YoungSam;Chung SukHwan;Kim MyoungJin;Ha SangYul;Kim KiTae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1140-1151
    • /
    • 2004
  • This paper reports on the finite elements analysis for die compaction process of cemented carbide tool parts. Experimental data were obtained under die compaction and triaxial compression with various loading conditions. The elastoplastic constitutive equations based on the yield function of Shima and Oyane were implemented into an explicit finite element program (ABAQUS/Explicit) and implicit finite element program (PMsolver/Compaction-3D) to simulate compaction response of cemented carbide powder during die compaction. For simulation of die compaction, the material parameters for Shima and Oyane model were obtained by uniaxial die compaction test. Explicit finite element results were compared with implicit results for cemented carbide powder.

A Study on the Dynamic Characteristics of Tungsten Alloy using Explicit FEM (익스플리시트 유한요소법을 이용한 텅스텐합금의 동적특성에 관한 연구)

  • Hwang D. S.;Rho B. L.;Hong D. H.;Hong S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.55-61
    • /
    • 2000
  • Tungsten heavy metal is characterized bi a high density and novel combination of strength and ductility. Among them, 90W-7Ni-3Fe is used for applications, where the high specific weight of the material plays an important role. They are used as counterweights, rotating inertia members, as well as for defense purposes(kinetic energy penetrators, etc.). Because of these applications, it is essential to detemine the dynamic characteristics of tungsten alloy. In this paper, Explicit FEM(finite element method) is employed to investigate the dynamic characteristics of tungsten heavy metal under base of stress wave propagation theory for SHPB, and the model of specimen is divided into two parts to understand the phenomenon that stress wave penetrates through each tungsten base and matrix. This simulation results were compared to experimental one and through this program the dynamic stress-strain curve of tungsten heavy metal can be obtained using quasi static stress-strain curve of pure tungsten and matrix.

  • PDF

A Study on the Dynamic Material's Characteristics of Tungsten Alloy using Split Hopkinson Pressure Bar (홉킨슨 압축봉 장치를 이용한 텅스텐 합금의 동적 재료 특성에 관한 연구)

  • Hwang, Doo-Soon;Rho, Beong-Lae;Hong, Sung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.92-99
    • /
    • 2005
  • Tungsten heavy metal is characterized by a high density and novel combination of strength and ductility. Among them, 90W-7Ni-3Fe is used for applications, where the high specific weight of the material plays an important role. They are used as counterweights, rotating inertia members, as well as fur defense purposes(kinetic energy Penetrators, etc.). Because of these applications, it is essential to detemine the dynamic characteristics of tungsten alloy. In this paper, Explicit FEM(finite element method) is employed to investigate the dynamic characteristics of tungsten heavy metal under base of stress wave propagation theory for SHPB, and the model of specimen is divided into two parts to understand the phenomenon that stress wave penetrates through each tungsten base and matrix. This simulation results were compared to experimental one and through this program, the dynamic stress-strain curve of tungsten heavy metal can be obtained using quasi static stress-strain curve of pure tungsten and matrix.