• Title/Summary/Keyword: 익스트림 그레디언트 부스팅

Search Result 2, Processing Time 0.022 seconds

Extracting characteristics of underachievers learning using artificial intelligence and researching a prediction model (인공지능을 이용한 학습부진 특성 추출 및 예측 모델 연구)

  • Yang, Ja-Young;Moon, Kyong-Hi;Park, Seong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.510-518
    • /
    • 2022
  • The diagnostic evaluation conducted at the national level is very important to detect underachievers in school early. This study used an artificial intelligence method to find the characteristics of underachievers that affect learning development for middle school students. In this study an artificial intelligence model was constructed and analyzed to determine whether the Busan Education Longitudinal Data in 2020 by entering data from the first year of middle school in 2019. A predictive model was developed to predict basic middle school Korean, English, and mathematics education with machine learning algorithms, and it was confirmed that the accuracy was 78%, 82%, and 83%, respectively, in the prediction for the next school year. In addition, by drawing an achievement prediction decision tree for each middle school subject we are analyzing the process of prediction. Finally, we examined what characteristics affect achievement prediction.

Comparison of Machine Learning Model Performance based on Observation Methods using Naked-eye and Visibility-meter (머신러닝을 이용한 안개 예측 시 목측과 시정계 계측 방법에 따른 모델 성능 차이 비교)

  • Changhyoun Park;Soon-hwan Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.105-118
    • /
    • 2023
  • In this study, we predicted the presence of fog with a one-hour delay using the XGBoost DART machine learning algorithm for Andong, which had the highest occurrence of fog among inland stations from 2016 to 2020. We used six datasets: meteorological data, agricultural observation data, additional derived data, and their expanded data. The weather phenomenon numbers obtained through naked-eye observations and the visibility distances measured by visibility meters were classified as fog [1] or no-fog [0]. We set up twelve machine learning modeling experiments and used data from 2021 for model validation. We mainly evaluated model performance using recall and AUC-ROC, considering the harmful effects of fog on society and local communities. The combination of oversampled meteorological data features and the target induced by weather phenomenon numbers showed the best performance. This result highlights the importance of naked-eye observations in predicting fog using machine learning algorithms.