• Title/Summary/Keyword: 익산

Search Result 475, Processing Time 0.027 seconds

A Therapeutic Effect of Ozonated Oil on Bovine Mastitis (젖소 유방염에 대한 Ozonated oil의 치료효과)

  • Jo Sung-Nam;Liu Jianzhu;Lee Sang-Eun;Hong Min-Sung;Kim Duck-Hwan;Kim Myung-Cheol;Cho Sung-Whan;Jun Moo-Hyung
    • Journal of Veterinary Clinics
    • /
    • v.22 no.4
    • /
    • pp.318-321
    • /
    • 2005
  • Forty- nine quarters from 24 lactating cows with chronic mastitis were selected. The cows were raised on dairy farms in Gongju, Jochiwon and Yeongi in Chungnam province, and Iksan in Jeonbuk province, Korea. The 49 quarters with bovine mastitis were divided into control (7 quarters) and experimental (42 quarters) groups. The experimental quarters were assigned to experimental group A (10 quarters, somatic cell count: $50-100\times10^4/ml)$, experimental group B (14 quarters, somatic cells count: $100-300{\times}10^4/ml)$, and experimental group C (18 quarters, somatic cells count: $>300\times10^4/ml$), according to the number of the somatic cells in their milk. The quarters of control group were treated with norfloxacin ointment (10 g/tube) based on the result of sensitivity, twice a day for 3 days. The quarters or experimental groups were infused 10ml or ozonated oils twice a day for 3 days. After treatment, the milk of the control group contained non-significantly lower numbers of somatic cells and bacteria on day 7, compared with pretreatment levels. Experimental groups A, B and C had lower somatic and bacterial cells in their milk on day 7, compared with pretreatment levels. Experimental group B and C had significantly lower numbers of somatic cells in their milk ell day 7 than before treatment (p<0.01). However, no significant difference in somatic cell numbers was detected between the control alld experimental groups. It was concluded that ozone therapy with ozonated oil applied on bovine mastitis might be effective.

The Effect of Lime Application after Cultivating Winter Forage Crops on the Change of Major Characters and Yield of Peanut (동계사료작물 재배후 석회물질 시용이 땅콩의 주요 형질 및 수량에 미치는 영향)

  • Kim, Dae-Hyang;Chim, Jae-Seong
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.103-114
    • /
    • 1995
  • These experiments were conducted for decrease of injury by continuous cropping in the peanut fields of Chonbuk Wangkungarea. The continuous cropping field for four years was used in this experiment. Italian ryegrass and rye were cultivated andlime materials were distributed for improvement of soil fertility. The results were as follows; 1. Forage crops were cultivatedand lime materials were distributed on the continuous cropping field of peanut. The organic matter content of the expermentalplot cultivating Italian ryegrass was only 1.25%. The organic matter content of soil cultivated Italian ryegrass after distributedmagnesium lime was 1.37% and that of soil cultivated Italian ryegrass after distributed gypsum was 1.30%. It was highcontent comparing to that of soil distributed lime materials only. The organic matter content of soil cultivated rye after distributed gypsum was 1.77%. 2. The phosphate content of soil cutivated Italian ryegrass was 332ppm. The phosphate content ofsoil cultivated Italian ryegrass after distributed magnesium lime was 34Oppm and that of soil cultivated Italian ryegrass afterdistributed gypsum was 31 2ppm. The phosphate content of soil cultivated rye only was 386ppm. The phosphate content ofsoil cultivated rye after distributed gypsum was 41 8ppm. This phosphate content was lower than that of soil distributed limematerials only. 3. The phytotoxin content of soil cultivated Italian ryegrass after distributed magnesium lime was decreased to17.7% and that of soil cultivated Italian ryegrass after distributed gypsum was decreased to 25.3%. The phytotoxin content ofsoil cultivated rye after distributed magnesium lime was decreased to 12.0% and that of soil cultivated rye after distributedgypsum was decreased to 12.8% comparing to the phytotoxin content of soil distributed lime materials only. Italian ryegrasswas effective to decrease phytotoxin among the forage crops and gypsum was effective among the lime materials. 4. Abacterial wilt and a late spot of peanut which were known as, main reason of continuous cropping failure were surveyed.lnccidence of a bacterial wilt was 3.4% in the plot cultivated Italian ryegrass only and that was 2.9% in the plot cultivated ryeonly. lnccidence of a bacterial wilt was 2.5% in the plot cultivated Italian ryegrass after distributed magnesium lime and thatwas 2.3% in the plot cultivated rye after distributed gypsum. Inccidence plot cultivated forage crops was lower than that of plotdistributed lime materials. 5. Inccidence of a late spot was high in the plot cultivated forage crops ony, but it was low in the plotcultivated forage crops after distributed lime materials comparing to that of the control plot. 6. The growth and yield of peanutwere bad in the plot cultivated forage crops only comparing to the control plot distributed lime materials only. These resultswere same in the plot cultivated rye after distributed lime materials, but the growth and yield were grown up in the plotcultured Italian ryegrass after distributed lime materials.

  • PDF

Bacterial Blight Resistance Genes Pyramided in Mid-Late Maturing Rice Cultivar 'Sinjinbaek' with High Grain Quality (벼흰잎마름병 저항성 유전자 집적 고품질 중만생 벼 '신진백')

  • Park, Hyun-Su;Kim, Ki-Young;Baek, Man-Kee;Cho, Young-Chan;Kim, Bo-Kyeong;Nam, Jeong-Kwon;Shin, Woon-Chul;Kim, Woo-Jae;Ko, Jong-Cheol;Kim, Jeong-Ju;Jeong, Jong-Min;Jeung, Ji-Ung;Lee, Keon-Mi;Park, Seul-Gi;Lee, Chang-Min;Kim, Choon-Song;Suh, Jung-Pil;Lee, Jeom-Ho
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.263-276
    • /
    • 2019
  • 'Sinjinbaek' is a bacterial blight (BB)-resistant, mid-late maturing rice cultivar with high grain quality. To diversify the resistance genes and enhance the resistance of Korean rice cultivars against BB, 'Sinjinbaek' was developed from a cross between 'Iksan493' (cultivar name 'Jinbaek') and the F1 cross between 'Hopum' and 'HR24670-9-2-1' ('HR24670'). 'Jinbaek' is a BB-resistant cultivar with two BB resistance genes, Xa3 and xa5. 'Hopum' is a high grain quality cultivar with the Xa3 resistance gene. 'HR24670' is a near-isogenic line that carries the Xa21 gene, a resistance gene inherited from a wild rice species O. longistaminata, in the genetic background of japonica elite rice line 'Suweon345'. 'Sinjinbaek' was selected through the pedigree method, yield trials, and local adaptability tests. Using bioassay for BB races and DNA markers for resistance genes, three resistance genes, Xa3, xa5, and Xa21, were pyramided in the 'Sinjinbaek' cultivar. 'Sinjinbaek' exhibited high-level and broad-spectrum resistance against BB, including the K3a race, the most virulent race in Korea. 'Sinjinbaek' is a mid-late maturing rice cultivar tolerant to lodging. It has multiple disease resistance against BB, rice blast, and stripe virus. The yield of 'Sinjinbaek' was similar to that of 'Nampyeong'. 'Sinjinbaek' showed excellent grain appearance, good taste of cooked rice, and enhanced milling performance, and we concluded that it could contribute to improving the quality of BB-resistant cultivars. 'Sinjinbaek' was successfully introgressed with the Xa21 gene without the linkage drag negatively affecting its agronomic characteristics. 'Sinjinbaek' improved the resistance of Korean rice cultivars against BB by introgression of a new resistance gene, Xa21, as well as by pyramiding three resistance genes, Xa3, xa5, and Xa21. 'Sinjinbaek' would be suitable for the cultivation in BB-prone areas since it has been used in breeding programs for enhancing plants' resistance to BB (Registration No. 7273).

The Establishment of Seongjusa Temple and the Production of Iron Buddhas (성주사 창건과 철불 조성 연구)

  • Kang Kunwoo
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.104
    • /
    • pp.10-39
    • /
    • 2023
  • Seongjusa Temple was founded in Boryeong in Chungcheongnam-do Province by Monk Muyeom (800-888), better known as Nanghye Hwasang. After returning from studying in China, Muyeom stayed in the Silla capital city of Gyeongju for a period. He later settled in a temple that was managed by the descendants of Kim In-mun (629-694). He then restored a burned-out temple and opened it in 847 as a Seon (Zen) temple named Seongjusa. It prospered and grew to become a large-scale temple with several halls within its domains. The influence of Seongjusa in the region can be seen in the Historical Record of Seongjusa Temple on Sungamsan Mountain, which relates that there were seventy-three rooms within the domains of the temple. What is most notable in the record is that the temple is referred to as "栴檀林九間," which means either "a structure with nine rooms built with Chinese juniper wood" or "a place that houses Chinese juniper wood and has nine rooms." Regardless of the interpretation, Seongjusa Temple had a large amount of juniper wood. Around this time, the term "juniper" referred to the olibanum tree (Boswellia sacra) native to the islands of Java and Sumatra in Southeast Asia. It is presumed that at some point after the death of Jang Bogo, the maritime forces that controlled the southwestern coast of Korea may have acquired a large amount of Southeast Asian olibanum wood and offered it to Seongjusa Temple. During the reign of King Munseong, Kim Yang (808-857) patronized Seongjusa Temple and its head monk Muyeom, who enjoyed a lofty reputation in the region. He sought to strengthen his own position as a member of the royal lineage of King Muyeol and create a bridge between the royal family and Seongjusan Buddhist sect. The court of King Wonseong designated Seongjusa Temple as a regional base for the support of royal authority in an area where anti-royal sentiment remained strong. Monk Muyeom is believed to have created an iron Buddha to protect the temple, enlighten the people, and promote regional stability. Given that the Seongjusa community had expanded to include more than 2,000 followers, the iron Buddha at Seongjusa Temple would have been perceived as an image that rallied the local residents. It is assumed that there were two iron Buddhas at Seongjusa Temple. The surviving parts of these Buddhas and the size of their pedestals suggest that they were respectively enshrined in the Geumdang Main Hall and the Samcheonbuljeon Hall of Three Thousand Buddhas. It is presumed that the first iron Buddha in Geumdang was a large statue over two meters in height and the second one was medium-sized with the height over one meter. The Historical Record of Seongjusa Temple on Sungamsan Mountain contains the phrase "改創選法堂五層重閣" which indicates that a multistoried Geumdang was newly built to enshrine a large Buddha sculpture like the first iron Buddha when Seongjusa Temple was founded. Also, according to the Stele of Seongjusa Temple and the surviving finger fragments, the first Buddha was making the fear-not and wish-granting (abhayavarada) mudras. The main Buddha of Seongjusa Temple is possibly Nosana Buddha, just like the main Buddhas at the contemporaneous temples Silsangsa, Borimsa, and Samhwasa. Given that Monk Muyeom studied Hwaeom teachings in his early years and received royal patronage upon his return, it is believed that the retro tendencies of the Hwaeom school, centered on the royal family of the Silla Dynasty, were reflected in Seongjusa temple.

Severe Outbreak of Rice Stripe Virus and Its Occurring Factors (벼줄무늬잎마름바이러스의 대 발생과 발생 요인)

  • Kim, Jeong-Soo;Lee, Gwan-Seok;Kim, Chang-Seok;Choi, Hong-Soo;Lee, Soo-Heon;Kim, Mi-Kyeong;Kwag, Hae-Ryun;Nam, Mun;Kim, Jeong-Sun;Noh, Tae-Hwan;Kang, Mi-Hyung;Cho, Jeom-Deog;Kim, Jin-Young;Kang, Hyo-Jung;Han, Jong-Woo;Kim, Byung-Ryun;Jeong, Sung-Soo;Kim, Ju-Hee;Kuo, Sug-Ju;Lee, Jung-Hwan;Kim, Tae-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.545-572
    • /
    • 2011
  • The genetic diagnosis methods by RT-PCR and Virion capture (VC)/RT-PCR against Rice stripe virus (RSV) were developed. Three diagnosis methods of seedling test, ELISA and RT-PCR were compared in virus detection sensitivity (VDS) for RSV. The VDS of ELISA for RSV viruliferous small brown plant hopper (SBPH) was higher with 40.5% than that of seedling test. The VDS of RT-PCR was higher with 21% than that of ELISA. The VDS of ELISA and VC/RT-PCR was same with 9.2% in average on the SBPH collected from fields at the areas of Gimpo, Pyungtaeg and Sihueng, Gyeonggi province in 2009. The specific primers of RSV for SBPH and rice plant were developed for the diagnosis by Real time PCR. The RQ value of Real time PCR for the viruliferous and non viruliferous SBPH was 1 for 50 heads of non viruliferous SBPH, 96.5 for 50 heads of viruliferous SBPH, 23.1 for 10 heads of viruliferous SBPH + 40 heads of non viruliferous SBPH, and 75.6 for 30 heads of viruliferous SBPH + 20 heads of non viruliferous SBPH. The RQ value was increased positively by the ratio of viruliferous SBPH. Full sequences of 4 genomes of RSV RNA1, RNA2, RNA3 and RNA4 were analysed for the 13 RSV isolates from rice plants collected from different areas. Genetic relationships among the RSV isolates of Korea, Japan and China were classified as China + Korea, and China + Korea + Japan by phylogenetic analysis for RSV RNA1 and RNA2. In case of RNA3 involved in pathogenicity, genetic relationship of RSV among the three countries was grouped into 3 as China, China + Korea, and Korea + Japan. According to the genetic relationships in RSV RNA4, RSV isolates were grouped into 4 as China, Korea, China + Korea + Japan, and Korea + Japan. Viruliferous insect rate (VIR) of RSV in average increased in each year from 2008 to 2010, and the rates were 4.3%, 6.1%, and 7.2%, respectively, at the 28 major rice production areas in 7 provinces including Gyeonggido. The highest VIR in each year was 11.3% of Gyeonggido in 2008, 20.1% of Jellanamdo in 2009 and 14.2% of Chungcheongbukdo in 2010. The highest VIR depending upon the investigated areas was 22.1% at Buan of Jellabukdo in 2008, 36% at Wando and Jindo of Jellanamdo in 2009, and 30.0% at Boeun of Chungcheongbukdo in 2010. Average population density (APD) of overwintered SBPH was 13.1 heads in 2008, 13.9 heads in 2009 and 5.6 heads in 2010. The highest APD was 39.1 and 60.4 heads at Buan of Jellabukdo in 2008 and 2009, respectively, and 14.0 heads at Pyungtaeg of Gyeonggido. The acreage of RSV occurred fields was 869 ha in the western and southern parts, mainly at Jindo and Wando areas, of Jellanamdo in 2008. In 2009, RSV occurred in the acreage of 21,541 ha covered whole country, especially, partial and whole plant death were occurred with infection rate of 55.2% at 3,025 plots in 53 Li, 39 Eup/Myun, 19 Si/Gun of Gyeonggido, Incheonsi, Chungcheongnamdo, Jeollabukdo and Jeollanamdo. Seasonal development of overwintered SBPH was investigated at Buan, Jeollabukdo, and Jindo, Jeollanamdo for 3 years from 2008. Most SBPH developed to the 3rd and 4th instar on the periods of May 20 to June 10, and they developed to the adult stage for the 1st generation on Mid and Late June. In 2009, all SBPH trapped by sky net trap were adult on May 31 to June 1 at Mid-western aeas of Taean, Seosan and Buan, and South-western areas of Sinan and Jindo. The population density of adult SBPH was 963 heads at Taean, 919 at Seocheon and 819 at Sinan area. The origin of these higher population of adult SBPH were verified from the population of non-overwintered SBPH but immigrant SBPH. From Mid May to Mid June in 2010, adult SBPH could not be counted as immigrant insects by sky net trap. The variation of RSV VIR was high with 2.1% to 9.5% for immigrant adult SBPH trapped by sky net trap at Hongsung of Chungcheongbukdo, Buan of Jeollabukdo and so forth in 2009. The highest VIR for the immigrant adult SBPH was 9.5% at Boryung of Chungcheongnamdo, followed by 7.9% at Hongsung of Chungcheongnamdo, 6.5% at Younggwang of Jeollanamdo, and 6.4% at Taean of Cheongcheongnamdo. The infection rate of RSV on rice plants induced by the immigrant adult SBPH cultivated near sky net trap after about 10 days from immigration on June 12 in 2009 was 84.6% at Taean, 65.4% at Buan and 92.9% at Jindo, and 81% in average through genetic diagnosis of RT-PCR. Barley known as a overwintering host plant of RSV had very low infection rate of 0.2% from 530 specimens collected at 10 areas covering whole country including Pyungtaeg of Gyeonggido. Twenty nine plant species were newly recorded as natural hosts of RSV. In winter annual plant species, 11 plants including Vulpia myuros showed RSV infection rate of 24.9%. The plant species in summer annual ecotype were 13 including Digitaria ciliaris with 44.9%, Echinochloa crusgalli var. echinata with 95.2% and Setaria faberi with 65.5% in infection rate of RSV. Five perennial plants including Miscanths sacchariflorus with infection rate of 33.3% were recorded as hosts of RSV. Rice cultivars, 8 susceptible cultivars including Donggin1 and 17 resistant ones including Samgwang, were screened in field conditions at 3 different areas of Buan, Iksan and Ginje in 2009. All the susceptible cultivars were showed typical symptom of mosaic and wilt. In 17 genetic resistant cultivar, 12 cultivars were susceptible, however, 5 cultivars were field-resistant plus genetic resistant to RSV as non symptom expression. When RSV was artificially inoculated at seedling stage to 4 cultivars known as genetic resistant and 3 cultivars known as genetic susceptible, the symptom expression in resistant cultivars was lower as 19.3% in average than that of 53.3% in susceptible ones. In comparison of symptom expression rate and viral infection rate using resistant Nampyung and susceptible Heugnam cultivars by artificial inoculation of RSV at seedling stage, the symptom expression of Heugnam was higher as 28% than 12% of Nampyung. However, virion infection of resistant Nampyung cultivar was higher as 12% reversely than 85% of susceptible Heugnam. Yield loss of rice was investigated by the artificial inoculation of RSV at the seedling stage of resistant cultivars of Nampyung and Onnuri, and susceptible cultivars of Donggin1 and Ungwang for 3 years from 2008. The average yield per plant was 7.8 g, 8.5 g and 13.8 g on rice plants inoculated at seedling stage, tillering stage and maximum tillering stage, respectively. The yield loss rate was increased by earlier infection of RSV with 51% at seedling stage, 46% at tillering stage and 13% at maximum tillering stage. In resistant rice cultivars, there was no statistically significant relation between infection time and yield loss. In natural fields on susceptible rice cultivar of Ungwang at Taean and Jindo areas in 2009, the yield loss rate was increased with same tendency to the infection hill rate having the corelation coefficient of 0.94 when the viral infection was over 23.4%.