• Title/Summary/Keyword: 익단 속도비

Search Result 4, Processing Time 0.019 seconds

Unsteady Nature of a Tip Leakage Vortex in an Axial Flow Fan (축류팬 익단누설와류의 비정상 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.845-850
    • /
    • 2003
  • Unsteady nature of a tip leakage vortex in an axial flow fan operating at a design and off-design operating conditions has been investigated by measuring the velocity fluctuation in a blade passage with a rotating hotwire probe sensor. Two hot-wire probe sensors rotating with the fan rotor were also introduced to obtain the cross-correlation coefficient between the two sensors located in the vortical flow as well as the fluctuating velocity. The results show that the vortical flow structure near the rotor tip can be clearly observed at the quasi-orthogonal planes to a tip leakage vortex. The leakage vortex is enlarged as the flow rate is decreased, thus resulting in the high blockage to main flow. The spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region at higher flow rates than the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition.

  • PDF

Aerodynamic Performance for Horizontal Axis Wind Turbine Model using Subsonic Wind Tunnel (풍동실험을 통한 수평축 풍력터빈 모델의 공력성능 연구)

  • Ryu, Ki-Wahn;Yoon, Seong-Jun;Lee, Chang-Su;Choy, Seong-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.964-972
    • /
    • 2007
  • Wind turbine experiment was carried out for the horizontal axis wind turbine with the aerodynamically optimized blade. From the comparison of aerodynamic performance between upwind and downwind type wind turbine rotor, the measured torque fluctuation of the latter is larger than that of the former. This phenomenon is owing to the interaction of wake generated from support column and blades. The wind turbine model satisfies the design condition in that the measured result of the power coefficient at zero pitch angle shows maximum peak at the designed tip speed ratio, λ = 6. It also shows that the decrease in aerodynamic power due to negative pitch change is more sensitive than that of the same positive pitch change.

Structure Design and Experimental Appraisal of the Drag Force Type Vertical Axis Wind Turbine (수직축 항력식 풍력터빈의 구조설계 및 실험평가)

  • Kim Dong-Keon;Keum Jong-Yoon;Yoon Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.278-286
    • /
    • 2006
  • Experiments were conducted to estimate the performance of drag force type vertical axis wind turbine with an opening-shutting rotor. It was operated by the difference in drag force generated on both sides of the blades. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was measured by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller. Various design parameters, such as the number of blades(B), blade aspect ratio(W/R), angle of blades$(\alpha)$ and drag coefficient acting on a blade, were considered for optimal conditions. At the experiment of miniature model, maximum efficiency was found at N=15, $\alpha=60^{\circ}$ and W/R=0.32. The measured test variables were power, torque, rotational speed, and wind speeds. The data presented are in the form of power and torque coefficients as a function of tip-speed ratio V/U. Maximum power was found in case of $\Omega=0.33$, when the power and torque coefficient were 0.14 and 0.37 respectively. Comparing model test with prototype test, similarity law by advance ratio for vertical axis wind turbine was confirmed.

Aerodynamic Performance Prediction of a Counter-rotating Wind Turbine System with Wake Effect (후류영향을 고려한 상반회전 풍력발전 시스템의 공력성능 예측에 관한 연구)

  • Dong, Kyung-Min;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.20-28
    • /
    • 2002
  • In this paper, the aerodynamic performance prediction of a 30kW counter-rotating (C/R) wind turbine system has been made by using the momentum theory as well as the two-dimensional quasi-steady strip theory with special care on the wake and the post-stall effects. In order to take into account the wake effects in the performance analysis, the wind tunnel test data obtained for a scaled blade are used. Both the axial and rotational inductions behind the auxiliary rotors are determined through the wake model. In addition, the optimum chord and twist distributions along the blades are obtained from the Glauert's optimum actuator disk model considering the Prandtl's tip loss effect. The performance results of the counter-rotating wind turbine system are compared with those of the conventional single rotor system and demonstrated the effectiveness of the counter-rotating wind turbine system.