• Title/Summary/Keyword: 이황화 결합 환원제

Search Result 3, Processing Time 0.018 seconds

Effect of Protease and Disulfide Bond Reducing Agent Treatment on the Texture of Cooked Rice (단백질 가수분해 효소 및 이황화 결합 환원제 처리가 밥의 텍스처에 미치는 영향)

  • Kim, Sung-Ran;Ahn, Seung-Yo
    • Applied Biological Chemistry
    • /
    • v.38 no.6
    • /
    • pp.563-569
    • /
    • 1995
  • Effect of protease and 2-mercaptoethanol treatment on the texture of cooked rice was investigated. Hardness, chewiness and gumminess of cooked rice were decreased by reducing the disulfide bonds of protein using 2-mercaptoethanol. Protease-treated rice grains, when cooked, showed more favorable results in stickiness measured by Instron, hardness measured by rheometer and sensory acceptability of cooked rice. Water content and volume expansion of cooked rice were increased by protease or 2-mercaptoethanol treatment. This results suggested that the textural characteristics of cooked rice may be influenced by surrounding or closely associated protein.

  • PDF

Effect of Protease and Disulfide Bond Reducing Agent Treatment on the Physicochemical and Gelatinization Properties of Rice (단백질 가수분해 효소 및 이황화 결합 환원제 처리가 쌀의 이화학적 성질과 호화 특성에 미치는 영향)

  • Kim, Sung-Ran;Ahn, Seung-Yo
    • Applied Biological Chemistry
    • /
    • v.38 no.6
    • /
    • pp.554-562
    • /
    • 1995
  • Effect of the modification of rice protein by protease and 2-mercaptoethanol on physicochemical and gelatinization properties was investigated for the three cultuvars of rice. Total amylose contents of Chucheongbyeo(japonica type), Chosengtongilbyeo(tongil type, indica x japonica) and IR 36 (indica type) were in the range of $20{\sim}25%$. Total amylose and insoluble amylose content of IR 36 were higher than the others. The differential scanning calorimetric and X-ray diffraction results revealed higher relative crystallinity of IR 36 than the others. Water uptake was increased and amylographic viscosity was significantly decreased by 2-mercaptoethanol treatment. Amylographic viscosity was significantly decreased and hot water-soluble carbohydrate content was increased by protease treatment. The proportions of high molecular weight of soluble carbohydrate fractionated by gel filtration chromatography were increased by protease treatment. These effects were most significant in IR 36. This results suggested that starch gelatinization be accelerated by alteration of the protein with protease and reducing agent.

  • PDF

The Role of DNA Binding Domain in hHSF1 through Redox State (산화환원에 따른 hHSF1의 DNA binding domain의 역할)

  • Kim, Sol;Hwang, Yun-Jeong;Kim, Hee-Eun;Lu, Ming;Kim, An-D-Re;Moon, Ji-Young;Kang, Ho-Sung;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.