• 제목/요약/키워드: 이탈 고객 예측

검색결과 34건 처리시간 0.025초

RNN을 이용한 고객 이탈 예측 및 분석 (Customer Churn Prediction Using RNN)

  • 이세희;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.45-48
    • /
    • 2016
  • 오늘날의 고객은 다양한 정보를 통해 넓은 선택의 기회를 가진다. 이러한 상황에서 기업들은 고객과의 지속적인 관계를 유지하기 어려워짐에 따라 고객 유지와 신규 고객 유치를 위한 마케팅 비용을 천문학적으로 지출하고 있다. 기업들이 이탈하는 고객의 속성을 분석하고 이탈 시점을 예측할 수 있다면 마케팅에 사용되는 비용과 노력을 최소화할 수 있을 것으로 예측된다. 이를 위해 본 논문에서는 효과적인 고객 이탈 예측을 위한 딥러닝 기반의 이탈 예측 모델을 제안한다. 이 모델은 모바일 RPG 게임 고객의 시계열적인 행동 패턴을 이용하여 이탈을 예측하는 모델로, 예측을 위한 학습을 할 때 모델링된 고객 데이터를 분석하여 이탈 고객의 특성을 파악할 수 있게 한다. 실험을 통해 이탈 고객과 미 이탈 고객의 모델링된 값이 각각 특정 속성에 치중되어 있는 것을 확인하였고, 제안 모델이 합리적으로 고객의 이탈을 예측하는 것을 보였다.

  • PDF

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • 이지영;김종우
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

데이터마이닝을 이용한 이탈확률에 기반한 고객 세분화

  • 홍태호;전성용
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2005년도 추계학술대회 발표 논문집
    • /
    • pp.119-129
    • /
    • 2005
  • 현재의 이동통신시장은 시장의 포화상태로 인해 신규 고객의 확보보다는 기존 고객의 유지에 마케팅 활동을 강화하고 있다. 본 연구에서는 이탈고객관리(churn management)를 위한 방안으로 데이터마이닝 기법에 기반하여 고객을 등급별로 세분화하였다. 이동통신 고객데이터를 활용하여 로짓모형, 인공신경망, SVM 등을 이탈고객 예측모형을 개발하였고, 각 모형별 성과를 통계적으로 비교하였다. 이탈고객 예측모형을 통해 고객의 이탈가능성을 등급화하여 등급별 이탈확률과 점유율, 적중률을 산출하였다. 제안된 고객등급화 방법을 통해 이동통신사들은 고객의 이탈확률에 따른 차별화된 마케팅 전락을 수행할 수 있을 것으로 기대된다.

  • PDF

Logistic Regression을 이용한 이탈고객예측모형 (Churn Prediction Model using Logistic Regression)

  • 정한나;박혜진;김남형;전치혁;이재욱
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.324-328
    • /
    • 2008
  • 금융산업에서 고객의 이탈비율은 기대수익에 영향을 미친다는 점에서 예측이 필요한 부분이며 최근 들어 정확한 예측을 통한 비용관리가 이루어지면서 고객 이탈을 예측하는 것이 중요한 문제로 떠오르고 있다. 그러나 보험 고객 데이터가 대용량이고 불균형한 출력 값을 갖는 특성으로 인해 기존의 방법으로 예측 모델을 만드는 것이 적합하지 않다. 본 연구에서는 대용량 데이터를 처리하는 데 효과적으로 알려져 있는 Trust-region Newton method를 적용한 로지스틱 회귀분석을 통해 이탈고객을 예측하는 것을 주된 연구로 하며, 불균형한 데이터에서의 예측정확도를 높이기 위해 Oversampling, Clustering, Boosting 등을 이용하여 고객 데이터에 적합한 이탈 고객 예측 모형을 제시하고자 한다.

  • PDF

SOM을 이용한 고객의 이탈 가능성 분석 및 이탈 방지 방법론

  • 채경희;김재경;송희석
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.694-697
    • /
    • 2004
  • 최근 빠르게 성숙되고 있는 시장과 경쟁적 환경으로 인해 고객 유지에 대한 중요성이 증대되고 있다. 이는 기존 고객을 유지하는 것이 비용 면에서 저렴할 뿐 아니라, 고객 충성도나 구전효과가 같은 기타 부수적인 이득을 획득할 수 있다는 측면에서 유리하기 때문이다. 본 논문은 고객의 이탈 가능성을 미리 예측하고 이를 사전에 방지할 수 있는 고객 유지 절차를 제시하고 있다. 이탈고객의 탐지 및 방지를 위해서는 기존의 인구통계학적 자료 외에도 웹로그, 구매 Database 등의 대용량의 고객 행위 데이터에 대한 분석이 요구되기 때문에 데이터 마이닝 기법의 활용이 필수적이다. 그러나 대부분의 데이터 마이닝 연구는 예측 및 분류의 정확성이 높은 모델을 개발하는데 초점이 맞추어져 있으며, 고객의 행위를 이해하고 바람직한 방향으로 유도하고자 하는 연구는 지극히 부족한 상황이다. 그러므로 본 논문은 다양한 데이터마이닝 기법을 통합하여 잠재 이탈고객을 탐지하고, 기존 연구에서 간과하고 있던 비용적 측면을 고려한 이탈 방지 절차를 제시하고자 한다.

  • PDF

CRM 고객데이터 분석을 통한 이탈고객 연구 (A Study of Customer Churn by Analysing CRM Customer Data)

  • 김상용;송지연;이기순
    • Asia Marketing Journal
    • /
    • 제7권1호
    • /
    • pp.21-42
    • /
    • 2005
  • 고객관계관리(customer relationship management: 이하 CRM)는 고객에 대한 정보를 수집하고 수집된 정보를 효과적으로 활용하여 신규고객획득, 우수고객 유지, 고객가치 증진, 잠재고객 활성화, 평생 고객화의 순환을 통하여 고객을 적극적으로 관리하고 유지하며 고객의 가치를 극대화시키기 위한 기업 마케팅 전략의 일환이다. 특히 경쟁 환경이 급변하고 치열해 짐에 따라 기업의 수익 극대화를 위한 고객가치 증대 및 고객과의 관계 형성을 위한 CRM활동 중 고객의 이탈방지를 통한 유지관리의 중요성이 점차 커지고 있으며, 이러한 움직임은 고객 세분화를 통한 이탈고객 관리분석으로 주로 금융시장에서 다루어져왔다. 한편, 금융시장뿐만 아니라 모든 사업 분야에서 고객 유지 및 이탈방지를 위한 분석의 필요성은 높아지고 있다. 그 이유는 자사가 보유하고 있는 고객의 특성을 파악함으로써 기존의 고객을 효과적으로 유지·관리하여 고객이탈을 막는 것이 고객관리에서 점차 그 중요성을 더하기 때문이다. 그러나 아직까지 필요성만 대두될 뿐 어떠한 속성을 보유하고 있는 고객이 쉽게 이탈하는지를 판별할 수 있는 이탈고객에 대한 체계적인 연구가 진행되지 않았다는데 한계점이 있다. 이에 본 연구에서는 TV 홈쇼핑사의 실제 고객자료를 통하여 고객의 유지 및 이탈방지를 위한 CRM전개방안, 이탈고객과 유지고객간의 인구통계적 속성 및 거래 행동의 특성 차이를 분석, 이탈에 미치는 영향력이 높은 변수를 밝혀내고 이탈고객예측 모형을 통하여 개별고객의 이탈확률을 예측하고자 했다. 더 나아가 실증 분석 결과를 바탕으로 이탈예측고객을 대상으로 고객 이탈을 방지하고 거래유지 및 활성화를 위한 CRM전개 방안을 도출, 이를 바탕으로 TV 홈쇼핑사가 수립해야할 마케팅 전략을 제시한다.

  • PDF

증권 금융 상품 거래 고객의 이탈 예측 및 원인 추론 (A Securities Company's Customer Churn Prediction Model and Causal Inference with SHAP Value)

  • 나광택;이진영;김은찬;이효찬
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.215-229
    • /
    • 2020
  • 산업 분야를 막론하고 머신러닝의 관심이 매우 높아지고 있으나, 머신러닝이 지닌 설명 불가능성은 여전히 문제로 남아있어 적극적인 업무 적용에 어려움이 있다. 본고에서는 증권사 금융 고객을 대상으로 이탈예측 모델 개발 사례를 소개하고 SHAP Value 기법을 사용하여 설명 가능한 머신러닝 모델 개발 시도와 해석 가능성 도출에 대한 연구 결과를 소개한다. 총 6가지 고객이탈 모델을 비교 분석하였으며, SHAP Value와 고객의 자산 변화에 따른 유형 분류 및 데이터 분석을 통해 고객 이탈 원인을 추론한다. 본 연구 결과를 토대로, 향후 마케팅 담당자의 실제 고객 마케팅 수행에 있어 원인 추론이 가능한 이탈 예측 결괏값을 사용하고 고객별 마케팅 여부를 점검하는 등의 종합적 판단 지표로 활용할 수 있을 것으로 판단된다.

XAI를 활용한 통신사 이탈고객의 특성 이해와 마케팅 적용방안 연구 (Research on Understanding Churned Customer and Application of Marketing in Telco. industry Using XAI)

  • 임진희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.21-24
    • /
    • 2022
  • 최근 통신업계에서는 축적된 빅데이터를 활용하여 고객의 특성을 이해하고 맞춤형 마케팅에 이용하려는 노력이 지속되어 왔다. 본 연구에서는 CatBoost 모델을 사용하여 이탈 가능성이 높은 고객을 예측하고 XAI(eXplainable Artificial Intelligence) 기법 중 하나인 SHAP을 적용하여 이탈에 영향을 미치는 요인을 설명하고자 하였다. SHAP의 global explanation 기법을 사용하여 특정 고객 segmentation 에 대한 이해력을 높이고, local explanation 기법을 사용하여 개별 고객에 대한 설명과 개인화 마케팅에 적용 가능성을 제시하였다. 본 연구는 기존의 이탈 예측모델인 블랙박스 모델이 갖는 한계점을 극복하고 고객의 특성을 이해하여 실제 비즈니스에 활용 가능성을 높였다는 점에서 의의를 가진다.

의사결정나무를 이용한 온라인 자동차 보험 고객 이탈 예측과 전략적 시사점 (Customer Churning Forecasting and Strategic Implication in Online Auto Insurance using Decision Tree Algorithms)

  • 임세현;허연
    • 경영정보학연구
    • /
    • 제8권3호
    • /
    • pp.125-134
    • /
    • 2006
  • 본 연구에서는 온라인 자동차보험 고객 이탈 예측에 있어 의사결정나무를 적용하였다. 우리는 본 연구에서 2003년과 2004년 사이에 온라인 자동차 보험을 계약한 고객의 데이터를 이용하여 의사결정나무를 이용해 고객이탈을 예측하였다. 우리는 C5.0 알고리즘에 기반을 둔 의사결정나무의 예측 결과에 대한 비교를 위해 다변량판별분석과 로짓분석을 이용하였다. 분석결과 의사결정나무 알고리즘은 다른 기법보다 예측성과가 매우 뛰어난 것으로 나타났다. 이러한 실증분석 결과는 온라인 자동차 보험에 있어서 마케팅전략 수립에 유용한 가이드라인을 제공해 줄 것이다.

이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론 (A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation)

  • 김형수;홍승우
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.111-126
    • /
    • 2020
  • CRM의 하위 연구 분야로 진행되었던 고객이탈예측은 최근 비즈니스 머신러닝 기술의 발전으로 인해 빅데이터 기반의 퍼포먼스 마케팅 주제로 더욱 그 중요도가 높아지고 있다. 그러나, 기존의 관련 연구는 예측 모형 자체의 성능을 개선시키는 것이 주요 목적이었으며, 전체적인 고객이탈예측 프로세스를 개선하고자 하는 연구는 상대적으로 부족했다. 본 연구는 성공적인 고객이탈관리가 모형 자체의 성능보다는 전체 프로세스의 개선을 통해 더 잘 이루어질 수 있다는 가정하에, 이차원 고객충성도 세그먼트 기반의 고객이탈예측 프로세스 (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation)를 제안한다. CCP/2DL은 양방향, 즉 양적 및 질적 로열티 기반의 고객세분화를 시행하고, 고객세그먼트들을 이탈패턴에 따라 2차 그룹핑을 실시한 뒤, 이탈패턴 그룹별 이질적인 이탈예측 모형을 독립적으로 적용하는 일련의 이탈예측 프로세스이다. 제안한 이탈예측 프로세스의 상대적 우수성을 평가하기 위해 기존의 범용이탈예측 프로세스와 클러스터링 기반 이탈예측 프로세스와의 성능 비교를 수행하였다. 글로벌 NGO 단체인 A사의 협력으로 후원자 데이터를 활용한 분석과 검증을 수행했으며, 제안한 CCP/2DL의 성능이 다른 이탈예측 방법론보다 우수한 성능을 보이는 것으로 나타났다. 이러한 이탈예측 프로세스는 이탈예측에도 효과적일 뿐만 아니라, 다양한 고객통찰력을 확보하고, 관련된 다른 퍼포먼스 마케팅 활동을 수행할 수 있는 전략적 기반이 될 수 있다는 점에서 연구의 의의를 찾을 수 있다.