• Title/Summary/Keyword: 이축인장피로

Search Result 4, Processing Time 0.025 seconds

Prediction of Biaxial Strength and Fatigue Life using the Concept of Equivalent Strength (등가강도 개념에 의한 탄소섬유 복합재료의 이축강도 및 피로수명 예측)

  • 이창수;황운봉
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • A failure criterion must be considered in each failure mode and loading condition to provide easy determining strength parameters, flexibility and rational simplicity. In this study, new failure criterion was developed by introducing equivalent strength under biaxial loading of tension and torsion. The experimental results showed that the equivalent biaxial strength has a power law relation with respect to a parameter, cos($tan^{-1}R_b$). Failure strength under biaxial loadings could be predicted as a function of tensile strength, torsional strength and biaxial ratio. The scattering of experimental data could be predicted using a Weibull distribution function and the concept of equivalent biaxial strength. Also, in this study, a fatigue theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for uniaxial loading. The prediction models can be predicted a biaxial strength and fatigue life of general laminated composite naterials under multi-axial loadings.

  • PDF

The Evaluation of Mechanical Properties and Fatigue Life for Domestic 304 Stainless Steel Used as Membrane Material in LNG Storage Tank (LNG저장탱크의 멤브레인용 국산 304 스테인리스강의 기계적성질 및 피로수명 평가)

  • Kim, Hyeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1644-1650
    • /
    • 2001
  • Mechanical properties of domestic 374 stainless steel have been evaluated fur membrane material used in LNG storage tank. LNG tank is operated around -162$^{\circ}C$. The temperature of membrane depends on LNG level. Accordingly, the membrane material is deteriorated by variation of liquid pressure and temperature. Tensile test and fatigue life test were performed at room temperature and -l62$^{\circ}C$ per code requirements. Especially the biaxial fatigue life test was conducted with shaped membrane sheet at a thermal strain of $\Delta$T=190$^{\circ}C$ The test results obtained with the domestic 304 stainless steel showed better properties compared to the values required by code.

Evaluation of Split Tension Fatigue Test Method for Application in Concrete (콘크리트의 쪼갬인장 피로실험방법 제안 및 적용성 평가)

  • Kim Dong-Ho;Lee Joo-Hyung;Jeong Won-Kyong;Yun Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.27-35
    • /
    • 2004
  • Most of concrete fatigue tests currently used are flexural tension or compression methods to investigate the tensile or compressive properties, respectively. However, the concrete pavement or concrete slab is actually subjected to a combined stress condition such as biaxial or triaxial. The split tension test may result in similar stress condition to biaxial stress condition. The purposes of this study were to evaluate the split tension fatigue test method for application in concrete. These were done by a finite element analysis and experimental series. The results were as follows: The optimum configuration of split tension fatigue test was a cylinder of 15cm in diameter and 7.5cm in thickness, which had a little different thickness compared to the KS standard cylinder of ${\phi}15{\times}30cm$. The concrete stress ratio of compressive against horizontal from FEA was 3.1, while that from theory was 3.0. The stress distributions of mortar and steel were almost similar at different thicknesses. The measured static split tensile strengths of concrete and mortar were quite similar at 30cm and 7.5cm thickness cylinders. The measured stress-strain relationship showed their consistency at all specimens regardless of thickness, and confirmed the results from FEA. As a results, the concrete split tension specimen, cylinder of 15cm in diameter and 7.5cm in thickness, could be used at fatigue test because of its accuracy, simplicity and convenience.

Damping Device for Hydraulic Breaker: Impact and Noise Reduction (유압 브레이커 메인바디의 충격 및 소음 저감을 위한 완충 장치에 대한 연구)

  • Cho, Byung Jin;Han, Hoon Hee;Koo, Jeong Seo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.113-122
    • /
    • 2018
  • A hydraulic breaker is an attachment of an excavator, and it crushes stones. Recently, research to reduce the impact and noise of breakers are ongoing. In this paper, a method to improve the upper, lower, and side dampers, which act as insulation for the attenuation of vibration during breaker operation, is studied through testing and simulation. To obtain the nonlinear material constants required for the simulation, the biaxial tensile test was performed with urethane, which is a material used for dampers. The existing parts and the improved parts were compared and evaluated using the LS-DYNA program. As a result, 50% of the equivalent stress was reduced in the bracket body of the hydraulic breaker, and the equivalent stress of the side damper was also decreased. We verified that the fatigue conditions were satisfied by performing a fatigue analysis.