• Title/Summary/Keyword: 이축응력

Search Result 52, Processing Time 0.028 seconds

Stress Analysis of a Trunnion Ball Valve for Ball Weight Reduction (이축 볼밸브의 볼 경량화를 위한 응력해석)

  • Kim, Hyung-Woo;Cho, Su-gil;Park, Jane;Lee, Jaehwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.373-380
    • /
    • 2020
  • A valve product can be over-designed or too heavy. Finite element analysis was performed using ANSYS for two and three-dimensional ball valve models, and the ball weight was reduced by optimization within the allowable design criteria. The ball is structurally safe according to the computed stress values, which are within the material's admissible stress. The weight was reduced by about 22%, and the structural safety factor was 1.25. The structural safety of the seat insert and ring, which are used to prevent leakage, was confirmed through finite element analysis. It is shown that the two-dimensional analysis can result in similar values to the three-dimensional analysis for the axisymmetric structure. The redesign of the valve is not included in the results since such changes require a whole new design process, including all valve components.

Stress Intensity Factors for the Mixed Mode in Rotating Disks by Boundary Element Method (경계요소법에 의한 회전원판의 혼합 모우드 응력확대계수)

  • Park, S.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.148-157
    • /
    • 1996
  • This paper deals with the applicability of linear elastic fracture mechanics under centrifugal force. Stress intensity factors K are calculated as a function of the inclination crack of length 2a, the position at different angular velocities 1200rpm, 2400rpm and at different values of the inclination crack angle .phi. ( .phi. = 0 .deg. , 15 .deg. , 30 .deg. , 45 .deg. , 60 .deg. , 75 .deg. , 90 .deg. ) and are measured in models of rotation disks using a boundary element method. Especially, stress intensity factors $K_{l}$ and $K_{ll}$ obtained separately from the crack tip of the mixed mode, were used to further investigate the influence of $K_{l}$ and $K_{ll}$ on fracture in rotating disks. With the increase in the speed of rotation, the effect of K/ sub l/became larger where as that of $K_{ll}$ became small. For the increase in the inclination crack angle .phi. , a decrease in $K_{l}$ and an increase in $K_{ll}$ were observed.

  • PDF

A Study on the Stress Induced Brittle Failure around Openings with Cross-sectional Shape by Scaled Model Test and DEM Simulation (모형시험과 개별요소법을 이용한 단면 형상에 따른 공동 주변 취성파괴에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.389-410
    • /
    • 2007
  • For moderately jointed to massive rock masses, the failure and deformation behaviors around an excavated opening are absolutely influenced by the initial rock stress and strength of in-situ rock mass. The localized and progressive brittle failure around an opening does not mean whole collapse of an excavated opening. But, for many cases, it may induce temporary stopping of excavation works and reexamination of the current supporting system, which can result in delay of the entire construction works and additional construction cost. In this paper, the characteristics of the brittle failure around an opening with stress level and tunnel shape was studied by the biaxial compressive test using scaled specimen and by the numerical simulation with $PFC^{2D}$. The biaxial test results were well coincided with the stress induced failure patterns around the excavated openings observed and monitored in the in-situ condition. For the circular part of the opening wall, the stress induced cracks initially occurred at the wall surface in the direction of the minimum principal stress and contributed to the localized notch shaped failure region having a certain range of angle. But for the corner and straight part of the opening wall, the cracks initiated at sharp corners were connected and coalesced each other and with existing micro cracks. Further they resulted in a big notch shaped failure region connecting two sharp corners.

A Study on the Elastoplastic Behavior and Yield Surface of Polymer Nanocomposites by Molecular Dynamics Simulations (분자동역학 전산모사를 이용한 나노입자 복합재의 탄소성 거동과 항복 예측에 관한 연구)

  • Yang, Seung-Hwa;Yu, Su-Young;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.558-561
    • /
    • 2010
  • 본 연구에서는 나노복합재의 탄소성 거동과 항복응력을 예측하기 위해 분자동역학 전산모사를 수행하였다. 나일론 기지와 실리카 나노입자가 포함된 단위 셀 구조로부터 나노입자의 체적분율 변화에 따른 응력-변형률 선도를 등변형률을 적용한 등온등압 앙상블 전산모사로부터 도출하였다. 4%의 변형률 범위에서 나노복합재의 탄성계수를 도출하였고, 이를 이용하여 2% 오프셋 방법으로 항복응력을 예측하였다. 나노입자의 유무에 따른 항복평면의 변화와 고분자 재료에서 나타나는 정수압 효과가 항복평면에 미치는 영향을 확인하기 위해 일축 인장/압축 그리고 이축 인장/압축을 수행하였고, 각각의 경우에 나타나는 나노복합재 내부의 자유체적 변화에 대한 분석을 통해 나노입자의 강화효과를 고찰하였다. 또한 고분자 기지로 인해 발생하는 정수압 효과를 반영한 von-Miss 항복평면을 도출하고, 입자의 체적분율 변화에 따른 항복응력의 예측이 가능하도록 정수압효과에 대한 파라메터를 체적분율의 함수로 근사하였다.

  • PDF

Constitutive Equation for Concrete using Anisotropic Continuum Damage Model (이방성 손상모델을 이용한 콘크리트 구성방정식의 도출)

  • Lee, Ki Seong;Byun, Keun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.751-759
    • /
    • 1994
  • Concrete contains numerous microcracks initially. The growth and propagation of microcracks cause failure of concrete. These processings are termed as "damage". The concepts of the continuum damage mechanics are presented and the damage evolution law and constitutive equation are derived by using the Helmholz free energy and the dissipation potential by means of the thermodynamic principles. The constitutive equation includes the effects of elasticity, damage and plasticity of concrete. The proposed model successfully predicts the nonlinear behavior of concrete subject to monotonic uniaxial and biaxial loadings.

  • PDF

Behavior of Fatigue Crack Initition and Growth in S45C Steel Under Biaxial Loading (이축하중을 받는 S45C강의 피로균열의 발생과 성장거동)

  • Park, S.H.;Lee, S.H.;Kim, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.206-211
    • /
    • 2000
  • Fatigue test was conducted on a S45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading system, i.e fully reserved cyclic torsion without a superimposed static tension or compression, fully reserved cyclic torsion with a superimposed static tension and fully reserved cyclic torsion with a superimposed static compression were employed. The test results show that a superimposed static tensile mean stress reduced fatigue lifetime. however a superimposed static compressive mean stress increased fatigue lifetime. Experimental results indicated that cracks were initiated on planes of maximum shear strain with either a superimposed mean stresses or not. A biaxial mean stress had an effect on the direction which cracks nucleated and propagated at stage I (mode II).

  • PDF

Numerical Analysis of Inelastic Lateral Torsional Buckling Strength of HSB800 Steel Plate Girders with Doubly Symmetric Section (이축대칭단면 HSB800 강재 플레이트거더의 비탄성 횡비틂좌굴강도의 해석적 평가)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Hwang, Min O
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • In this paper, lateral-torsional buckling(LTB) strength of HSB800 steel plate girder under uniform bending moment was estimated by the nonlinear analysis. Doubly symmetric sections with slender, noncompact and compact webs were considered and the LTB strength in the inelastic range was estimated by taking initial imperfection and residual stress into account. For the numerical analysis, single-panel model and three-panel model were considered and analysis of SM490 steel plate girder was performed to judge the validity of the constructed models by comparing the results with AASHTO, AISC, Eurocode and KHBDC(LSD) codes. By using the same models, LTB strength of HSB800 girder was evaluated and it was acknowledged that the current codes can be applied to HSB800 girders with doubly symmetric section in the inelastic LTB range.

Prediction of Fatigue Crack Initiation Direction around a Hole under Biaxial Loads Considering Phase Difference and Biaxiality (이축성과 위상차의 영향을 고려한 이축 하중하에서 구멍 주위에서의 피로 균열 발생 방향 예측)

  • Huh, Yong-Hak;Park, Pil-Ip;Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.156-161
    • /
    • 2004
  • To predict the direction of the fatigue crack initiated from a hole under various types of biaxial fatigue loads with different phase difference and biaxiality, fatigue parameters were investigated. Axial and torsional biaxial fatigue loads were selected with the respective combination of five different phase differences of 0, 45, 90, 145 and 180 degrees and five biaxialities of 0, $1/{\sqrt{3}}$, 1, ${\sqrt{3}}$, ${\infty}$. Directions of the fatigue crack initiation around the hole were found to approach to the circumferential direction of the specimen with increment of the phase difference for fatigue tests with phase differences less than $90^{\circ}$. Whereas directions for tests with phase differences greater than $90^{\circ}$ went away from the circumferential direction and those were symmetric to the directions for tests with phase difference less than $90^{\circ}$. With increase of biaxilities, the fatigue crack initiated more apart from the circumferential direction of the specimen. These crack initiation direction were predicted using maximum tangential stress range and maximum shear stress range obtained at far-field and around the hole. Comparing these two stress parameters, The crack initiation direction can be successfully explained by using the direction of the maximum tangential stress range obtained around the hole and at far-field.

  • PDF

Nonlinear Seismic Response and Failure Behavior of reinforced Concrete Shear Wall Subjected to Base Acceleration (지반가속도에 의한 철근콘크리트 전단벽의 비선형 지진응답 및 파괴거동)

  • 유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.21-32
    • /
    • 1999
  • A ground motion resulting from the destructive earthquakes can subject reinforced concrete members to very large forces. The reinforced concrete shear walls are designed as earthquake-resistant members of building structure in order to prevent severe damage due to the ground motions. The current research activities on seismic behavior of reinforced concrete member under ground motions have been limited to the shaking table test or equivalent static cyclic test and the obtained results have been summarized and proposed for the seismic design retrofit of structural columns or shear walls. The present study predicted the seismic response and failure behavior of reinforced concrete shear wall subjected to base acceleration using the finite element method. A decrease in strength and stiffness, yielding of reinforcing bar, and repetition of crack closing and opening due to seismic load with cyclic nature are accompanied by the crack which is necessarily expected to take place in concrete member. In this study the nonlinear material models for concrete and reinforcing bar based on biaxial stress field and algorithm of dynamic analysis were combined to construct the analytical program using the finite element method. The analytical seismic response and failure behaviors of reinforced concrete shear wall subjected to several base accelerations were compared with reliable experimental result.

  • PDF