• 제목/요약/키워드: 이진변수

검색결과 413건 처리시간 0.027초

모의 담금질을 이용한 이진반응변수 사용추적회귀 (Projection Pursuit Regression for Binary Responses using Simulated Annealing)

  • 박종선
    • 응용통계연구
    • /
    • 제14권2호
    • /
    • pp.321-332
    • /
    • 2001
  • 본 논문에서는 반응변수가 두 가지의 값을 갖는 회귀분석에 적용할 수 있는 사영추적회귀를 고려하였다. 회귀모형에 필요한 설명변수들의 선형결합이 하나이고 연결함수의 형태를 사전에 알지 못한다는 가정하에서 모의담금질 기법을 이용하여 모형에 필요한 선형결합을 찾는 알고리즘을 제시하였다. 이진 반응변수의 경우에는 평활모수의 값에 따라 잔차이탈도함수의 반응표면이 단봉의 형태를 갖지 않는 경우가 있어 비동질적 마코프체인을 이용한 모의담금질 기법을 적용하면 효율적으로 선형결합을 탐색할 수 있다.

  • PDF

무게 있는 리프 이진 트리 균형 문제를 해결하는 알고리즘 (Algorithms for Balancing Weighted-Leaf Binary Tree)

  • 이동규;백낙훈;이종원;류관우
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (A)
    • /
    • pp.692-694
    • /
    • 2000
  • 본 논문에서는 이진 트리 형태를 가지는 다관절체의 균형을 잡거나 이진 트리 모양으로 연결된 네트워크 상에서 단말 노드들의 부하를 균형 있게 하는데 이용할 수 있는 무게 있는 리프 이진 트리 균형 문제를 제안한다. 또한 무게 있는 리프 이진 트리 균형 문제를 리프들의 무게 변화량의 쌍의 {{{{ { l}_{ 1} }}}}-norm, {{{{ { l}_{2 } }}}}-norm, {{{{ { l}_{3 } }}}}-norm 각각을 최소로 하면서 해결하는 방법들을 제안한다. 이 방법들은 무게 있는 리프 이진 트리 균형 문제의 특성을 이용하여 n개 변수를 하나의 변수의 양의 상수배로 나타냄으로써 해결할 수 있음을 보인다.

  • PDF

만족가능성 처리기를 이용한 이진 변수 서브시퀀스 추출 (Extracting Subsequence of Boolean Variables using SAT-solver)

  • 박사천;권기현
    • 정보처리학회논문지D
    • /
    • 제15D권6호
    • /
    • pp.777-784
    • /
    • 2008
  • 최근 정형 검증 분야에서 상태 폭발 문제를 극복하기 위해 만족가능성(Satisfiability) 처리기를 사용하는 방법이 많이 연구되고 있다. 만족가능성 처리기를 사용하려면 대상을 CNF 식으로 변환해야 하는데, 이진 기수 제약 조건은 시스템을 CNF 식으로 변환하기 위해 많이 사용되는 기법이다. 그러나 이진 기수 제약 조건은 이진 변수들의 집합을 다루기 때문에 이진 변수들의 순서 정보는 변환할 수 없었다. 본 논문에서는 이진 변수의 시퀀스에서 길이가 k인 서브시퀀스 추출 문제에 대한 CNF 변환 방법을 제안한다. 또한 실험을 통해 제안된 방법이 순서정보를 고려치 않고 적용한 변환 방법보다 훨씬 더 좋은 결과를 얻을 수 있었다.

효과적인 이진화를 위한 영상개선기법의 정의 및 구현 (Definition and Implementation of Image Enhancement Techniques for Efficient Binarization)

  • 최경주;변혜란;이일병
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권2호
    • /
    • pp.284-296
    • /
    • 1999
  • 문자 인식 및 영상 인식 분야의 대부분의 연구들은 이진영상(binary image)을 바탕으로 이루어진다. 하지만, 입력영상에서 보다 많은 정보를 얻기 위해 명도영상(grayscale image) 으로 입력받아 필요한 정보를 추출한후 이진영상으로 변환하여 처리하는 방법도 많이 사용되고 있다. 이런 경우, 명도영상으로부터의 보다 깨끗한 이진영상의 획득 여부는 시스템의 성능과도 밀접한 관계가 있다. 본 논문에서는 기존의 대부분의 이진화 방법과는 달리, 실제 이진화를 수행하기 이전에 여러 가지 필터링 기법을 사용하여 영상의 질을 개선시키는 영상개선기법을 사용한후, 기존의 이진화방법을 사용하여 명도영상을 이진화하는 방법을 제안하고자 한다. 영상의 질을 개선시키기 위해서 BM 필터링, 경게선 개선 필터링, Erosion필터링 방법을 사용하였으며 , 기존의 이진화방법으로는 전역적 이진화 방법중 하나로써 클래스간 분산을 이용한 Ostu 방법[1]을 사용하였다. 다양한 종류의 문서를 대상으로 실험하였는데 평가실험에 사용된 영상은 문서 특성에 따라 균일하지 않은 배경을 가진 영상, 순수하게 텍스트로만 구성된 영상, 선성분이 많으며 명도값이 다양하게 나타나는 영상, 텍스트와 선성분이 함께있는 영상 등 크게 4가지 부류로 구분하였고, 평가대상 영상에 대해 매개변수의 개수, 끊어진/잃어버린 /뭉게진 물체가 적은 정도, 실행속도, 매개변수 결정의 용이성, 잡영이 적은 정도를 평가기준으로 선정한 후, 정량적인 평가가 어려운 항목에 대해서는 9개의 등급으로 나누어 이진화 된 영상의 특성을 분석, 평가하였다.

내구소비재 보유함수의 추정: 이진수 종속변수를 이용한 회귀분석

  • 윤석범;이회경
    • Journal of the Korean Statistical Society
    • /
    • 제6권2호
    • /
    • pp.117-154
    • /
    • 1977
  • 본논문에서는 첫째로 단일방정식 모형에서 종속변수가 양자택일(binary choice)의 이산확률변수일 때 이러한 이진적 종속변수(binary dependent variable)의 변동을 설명하는데 사용되는 몇 가지 모형을 소개하고 각각의 표기 및 추정방법, 추정량의 성질, 예측 및 검정 문제 등에 관하여 비교 서술하고자 한다. 둘째, 종속변수가 이산과 연속의 혼합형태일 때 앞에 소개된 모형이 어떻게 적용될 수 있는가를 살펴보며, 셋째, 선택대상 및 종속변수의 수가 증가하여 일반화된 선다형모형(multiple choice model)의 경우, 표기 및 추정방법을 단일방정식 기법을 이용하여 추가로 총람하고자 한다. 넷째, 본논문에서는 또한 내구소비재 구입에 관한 조사자료를 이용하여 실제 많이 사용되는 몇 개의 모형을 선택하여 적용하고 각각의 예측력을 분석함으로써 각 모형을 비교 검토하는데 목적이 있다.

  • PDF

연속방법을 사용한 Bayesian 영상복원 (Bayesian Image Restoration Using a Continuation Method)

  • 이수진
    • 공학논문집
    • /
    • 제3권1호
    • /
    • pp.65-73
    • /
    • 1998
  • 영상복원법 중에는 복원하고자 하는 원 영상의 화소밝기분포가 부분적으로 평탄하다는 가정을 한 부가적인 Gibbs 사전정보를 포함하는 방법이 있다. 이 경우 Gibbs 사전정보를 표현하기 위해 원 영상의 화소밝기를 나타내는 실변수 뿐 아니라 경계를 정의하는 이진변수를 포함하는 에너지 함수를 정의하게 된다. 그러나, 이러한 실변수와 이진변수의 복합형태가 존재할 경우 이들을 동시에 추정하는 것은 매우 어려운 것으로 알려져 있다. 본 연구에서는 deterministic annealing 방법의 응용을 고찰하기로 한다. Deterministic annealing 방법은 다른 방법과 달리 실수 값을 취하는 변수 및 이진변수가 복합형태로 존재하는 문제를 다루는데 있어서 매우 원리적이고 효율적인 방법을 제공한다. 이 방법에서는 복합형태를 취하는 원 함수에 근접하도록 하는 일련의 함수들을 정의하게 되는데, 이때 새로운 일련의 함수들은 실변수만을 취하도록 변환된다. 일련의 함수 중 개개의 함수는 조종파라미터(냉각시 온도에 해당)에 의해 지정된다. 고온에서의 에너지 함수는 저온에서의 에너지와 유사하나 좀더 완만한 형태를 취하게 된다. 따라서, 온도를 서서히 낮추면서 고온에서의 에너지 함수를 저온에서의 에너지 함수로 변환시켜 감으로써 에너지 함수를 최소화하는 작업이 용이해 진다. 이것이 연속방법의 핵심이다. 본 논문에서는 이러한 연속방법을 Bayesian 영상복원 모델에 적용하여 그 성능을 실험을 통해 검증한다.

  • PDF

이진자료 분류모형에 대한 평가측도의 특성 비교 (Comparison of evaluation measures for classification models on binary data)

  • 김병수;권소영
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.291-300
    • /
    • 2019
  • 본 논문에서는 반응변수가 이진형인 분류모형에 대한 평가측도들의 특성을 파악하고 사용하기 적합한 평가측도인가를 살펴보았다. 고려한 측도는 정분류율, 민감도, 특이도, 정밀도, F-measure, HSS (Heidke's skill score)의 6개이다. 각 측도들은 이원분할표에서 x(실제로 1인 비율), y(1로 예측되는 비율), z(실제와 예측이 모두 1인 비율)을 사용하여 표현하였다. 본 연구는 평가측도가 사용하기 적합한 측도가 되기 위한 조건으로 두 가지를 제안하였다. 제1조건은 랜덤모형인 경우에 평가측도는 x와 y에 대해 상수이고, 제2조건은 평가측도의 식이 세 변수들(x, y, z) 모두로 이루어지고 z에 대해서 증가함수이고 x와 y에 대해서 감소함수이어야 한다는 것이다. HSS는 두 조건을 모두 만족하므로 이진형 반응변수의 분류모형에 대한 평가측도로 항상 사용이 적합하고, 다른 측도들은 제한된 범위 내에서만 사용하는 것이 좋다.

주변화 모형을 이용한 의료 패널 이진 데이터 분석 (Analysis of medical panel binary data using marginalized models)

  • 오채영;이근백
    • 응용통계연구
    • /
    • 제37권4호
    • /
    • pp.467-484
    • /
    • 2024
  • 경시적 자료는 같은 개체를 반복 측정함으로써 시간의 흐름에 따른 반복 측정된 자료들 간의 상관관계가 존재한다. 따라서 경시적 자료분석에서는 이 상관관계를 분석할 때 개체 내 상관관계와 개체 간 변동성 모두를 고려해야 한다. 본 논문에서는 경시적 이진 자료를 분석하기 위한 모형 중 공변량의 모집단 평균 효과의 추정을 위해 주변화 모형에 집중하고자 한다. 경시적 이진 자료분석을 위한 주변화 모형으로는 주변화 임의효과, 주변화 전이, 주변화 전이 임의효과 모형이 있으며, 본 논문에서 이들 모형을 먼저 고찰하고, 그리고 모형들의 성능을 비교하기 위해 결측치가 없는 자료와 결측치가 있는 자료로 나눠서 모의실험을 진행한다. 모의실험에서 자료에 결측치가 있는 경우에 자료가 생성된 모형에 따른 성능 차이가 있음을 확인하였다. 마지막으로 주변화 모형을 이용하여 한국의료패널자료를 분석한다. 한국의료패널자료는 반응변수로 주관적 불건강 응답을 이진변수로 고려하였고, 여러 설명변수를 가진 모형을 비교하고 가장 적합한 모형을 제시한다.

이진 낮은 상관 구역 수열군을 이용한 새로운 4진 낮은 상관 수열군의 생성법 (A New Construction of Quaternary LCZ Sequence Set Using Binary LCZ Sequence Set)

  • 장지웅;김상효;임대운
    • 한국통신학회논문지
    • /
    • 제34권1C호
    • /
    • pp.9-14
    • /
    • 2009
  • 본 논문에서는 매개 변수가 (N,M,L,1)인 특정 성질을 가진 이진 낮은 상관 구역 수열균(LCZ sequence)를 이용하여 매개 변수가 (2N,2M,L,2)인 4진 낮은 상관 수열군을 생성하는 방법을 제시한다. 본 논문에서 이용하는 이진 낮은 상관 수열군은 balance property를 가지고 있어야 하며, 주기 N이 $N{\equiv}3$ mod 4이어야 하고, 특정한 상관 특성을 가져야 한다. 새로 제안된 생성법은 특정 성질을 가진 이진 낮은 상관 수열군을 이용하여 이진 낮은 상관 수열군을 생성한 Kim, Jang, No, and Chung의 생성법을 응용한 것이다.