• Title/Summary/Keyword: 이중 연료 엔진

Search Result 52, Processing Time 0.022 seconds

Dynamic Characteristics for Fuel Shutoff Valve of a Gas Generator (가스발생기 연료개폐밸브의 동적 거동)

  • Lee, Joong-Youp;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • Fuel shutoff valve of a gas generator controls propellant mass flowrate of a rocket engine, by using pilot pressure and spring force. The developing fuel shutoff valve can be self sustained even though pilot pressure is removed in an actuator. Therefore, it is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure for the opening of the poppet and to determine the working fluid pressure at which the valve starts to close. This paper also has been designed dynamic model using the AMESim and predicted flow coefficient of the valve by Fluent CFD analysis. Various results from the prediction and the analysis have been compared with experiments. Finally, dynamic characteristics of the valve have been verified with experimental results.

Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Engine Temperature Condition in the MPI Dual Injection Engine (MPI Dual Injection 엔진의 온도 조건 변화에 따른 엔진 내부 유동 및 연료 거동 특성에 관한 연구)

  • Lee, Seung Yeob;Chung, Jin Taek;Park, Young Joon;Yu, Chul Ho;Kim, Woo Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.210-219
    • /
    • 2014
  • The MPI dual injection engine can enhance the fuel efficiency and engine power. By using one injector per one intake port, MPI dual injection engine has an excellent fuel atomization and targeting injection. As the basic research for the MPI Dual injection engine design, this research was investigated in order to understand the characteristic of the in-cylinder flow and fuel behavior according to engine temperature condition and the fuel type in the MPI dual injection engines. The 3D unsteady CFD simulation for the MPI Dual injection engine was performed using STAR-CD. The engine operating condition was 2,000 rpm/WOT. The parameters for this study were fuel types, fuel temperatures and wall temperatures. As a result, the intake air amount, evaporated fuel in the cylinder and the fuel film on the wall were presented according to parameters that depend on the fuel properties and engine wall temperature. Also, the results were influenced by in-cylinder flow such as the intake flow, back flow and so on.

A study on the characteristic of fuel shutoff valve for 75 $ton_f$ combustion chamber (75톤 연소기용 연료개폐밸브의 특성에 대한 고찰)

  • Lee, Joong-Youp;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-90
    • /
    • 2012
  • Fuel shutoff valve of a combustion chamber controls propellant mass flowrate of a rocket engine, by using pilot pressure and spring force. The developing fuel shutoff valve can be self sustained even though pilot pressure is removed in an actuator. Therefore, it is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure for the opening of the poppet and to determine the working fluid pressure at which the valve starts to close. This paper also has been predicted flow coefficient of the valve by Fluent(ver. 12.0) CFD analysis. Various results from the prediction and the analysis have been compared with experiments.

Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions (연료 과농 환경에서 분사기 유량 통과 특성 연구)

  • Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Mun-Ki;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.9-12
    • /
    • 2010
  • This paper discusses experimental data for the assessment of flow discharging characteristics of double swirl coaxial injectors operating at fuel-rich conditions. Combustion tests employing liquid oxygen and kerosene (Jet A-1) were conducted and a discharge coefficient was utilized for defining flow characteristics. A mass flow rate, a pressure, and a temperature were measured to estimate discharge coefficients. Fuel injectors revealed a fixed value of a discharge coefficient regardless of matched LOx injector design, chamber pressure, and mixture ratio. However, oxidizer injectors showed varying discharging coefficients depending on chamber pressure and mixture ratio. Flame structure variations seem to affect flow discharging characteristics of the oxidizer side.

  • PDF

Effects of Fuel Injection Strategies on Wall Film Formation at Port Injection Gasoline Engine (포트분사식 가솔린엔진에서 연료분사전략이 Wall Film 생성에 미치는 영향 연구)

  • Lee, Ziyoung;Choi, Jonghui;Jang, Jihwan;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.36-41
    • /
    • 2018
  • Fuel wall film effects power output and cycle deviation by changing the amount of fuel flowing into cylinder in PFI gasoline engines. Reduction of wall film can reduce fuel consumption and improve combustion stability. In this research, the effects of injection strategies including injection pressure and dual injection system is investigated for reducing wall film formation. The CONVERGE software is used for numerical analysis tool and O'Rourke film splash model was used for wall film prediction model. Compared with the reference case wall film decreased with increase of injection pressures, and the film formation reduced when the dual injection system was used.

Performance Analysis Charging/Discharging Strategy for HEV Adopting ESR-Ratio of Batteries and Ultra-Capacitors (배터리와 초고용량 커패시터의 내부 저항 비를 고려한 HEV의 충.방전 전략개발)

  • Kim, Won-Kyum;Jang, Jae-Hoon;Yoo, Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.366-368
    • /
    • 2007
  • 하이브리드 차량은 기존의 화석연료를 사용하는 엔진과 배터리, 초고용량 커패시터로부터 전원을 공급받는 전동기를 직 병렬 구조로 연결하여 연비를 개선하기 위해 개발되었다. 이를 위하여 가속 시 배터리와 초고용량 커패시터의 방전으로부터 전원을 공급받고, 감속 시 회생제동을 통해 다시 충전을 반복한다. 최근 배터리와 초고용량 커패시터의 용량 및 출력의 장단점을 상호 보완하고자 이중 보조 동력원에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 배터리와 초고용량 커패시터의 내부 저항을 고려하여 병렬 사용하는 이중 보조 동력원 시스템에 대하여 각각의 충전용량(SOC)에 따른 운전전략을 개발하고자 한다.

  • PDF

A Study of Thermo-Mechanical Analysis for the Design of High Pressure Piping System for Natural Gas Fuel Vessel (천연가스 연료선박의 고압 이중 배관 설계를 위한 열-구조 해석에 관한 연구)

  • Park, Seong-Bo;Sim, Myung-Ji;Kim, Myung-Soo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • LNG (liquefied natural gas) is considered the best alternative eco-fuel, and many studies on the LNG fuel system have been performed to use LNG as the fuel for ships. For the LNG fuel supply system, natural gas transfers from the vaporizer to the engine in the gaseous state with a temperature of $50^{\circ}C$ and a pressure of 35MPa. Therefore, a structural safety evaluation of the double-walled pipelines considering thermal load is essential. In this article, an uniaxial tensile test for super duplex stainless steel, material for double-walled pipe, according to the annealing time was carried out to analyze the thermal effect. In addition, thermo-structural analysis of the high temperature-high pressure double-walled pipe with fixed supports that are now used widely was carried out to evaluate the structural safety. To minimize stress concentration of the connection point between the support and inner pipe, the shapes of the new type support that can slip through inner pipe were proposed, and the supports which has best structural performance was selected using the results from the thermo-structural analyses of new supports and an analysis of the whole double-walled pipeline was performed to ensure structural safety. These results can be used as a database for the design of double-walled pipelines and sliding support.

Performance and Emission Characteristics of GHP Engine at Different Natural Gas Heating Value (천연가스 열량 변화에 따른 GHP 엔진의 성능 및 배출가스 특성)

  • Lee, Joongseong;You, Hyunseok;Choi, Jeonghwan;Choi, Euikwang;Lee, Kyungho;Lee, Byungdae
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In general, natural gas is used as GHP(Gas Engine Driven Heat Pump) fuel. On this study, the influences of different natural gas heating value on GHP were evaluated. As a result of engine test & field test using low heating value gas($9,800kcal/Nm^3$) as fuel, the engine power was reduced slightly, however the performance of start-up, the stability of operation and the characteristics of emission gas were almost similar. So it is considered that the normal operation of GHP is possible without any tuning when the low heating value($9,800kcal/Nm^3$) of natural gas was used as fuel.

Spray Characteristics of Single and Double Liquid Jets in Crossflow (주류유동에서 단일 및 이중 수직분사 분무특성)

  • Yoon, Hyun-Jin;Hong, Jung-Goo;Park, Cheol-Woo;Lee, Choong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.495-501
    • /
    • 2012
  • Spray characteristics of liquid jets in crossflow, which can be observed in the liquid jet injection system of a gas turbine or ramjet engine, were experimentally investigated. By measuring liquid jet penetration in the case of single orifice and double orifice injectors, the experimental formula for jet penetration was modified to consider penetration distances greater than that considered in a previous study. The changes in spray characteristics resulting from changes in the liquid jet and crossflow pressure, including SMD and jet disintegration, were carefully studied. Specifically, the jet penetration was measured for different injector shapes, and in the case of a double orifice injector, the penetration of the rear orifice jet was found to be greater by approximately 20% ($L_h$ = 4 mm) compared to that in the case of a single orifice injector because of the influence of the front orifice.

Evaluation of Weldability on Identical and Dissimilar Welding Parts of Austenite Stainless Steel by GTAW (오스테나이트 스테인리스강에 대한 가스텅스텐 아크용접 시동종 및 이종 용접부의 용접성 평가)

  • Han, Min-Su;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.68-74
    • /
    • 2011
  • This papers investigated the mechanical characteristics and the weldability of identical as well as dissimilar welding by GTAW for STS 304 and STS 316L. It is applied to double wall gas pipe of duel fuel engine for LNG carrier. Consequently, the weldability of dissimilar and identical welded zone of STS 304 decreased compared to base metal significantly. The result of microstructure observation for welded zone, a degree of acicular ferrite in welding zone for STS 304 presented more than STS 316L. The hardness of welding zone for STS 304 presented higher value than that for STS 316L by this effect.