• Title/Summary/Keyword: 이중대역 동작

Search Result 169, Processing Time 0.024 seconds

Dual-band RFID Tag Antenna Applicable for RF Power Harvester System (RF 에너지 충전 시스템 기능을 위한 이중대역 RFID 태그 안테나)

  • Mun, Byeonggwi;Rhee, Changyong;Kim, Jae-Sik;Cha, Junghoon;Lee, Byungje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.5
    • /
    • pp.46-51
    • /
    • 2013
  • In this paper, a dual-band antenna is proposed for the RF power harvester system as well as RFID tag. The proposed antenna operates as the passive and active RFID tag antenna in the UHF and microwave band, respectively. In addition, to charge the battery of an active RFID tag in the microwave band, it harvest the RF signal for tagging from the passive RFID tag antenna in the UHF band. The proposed antenna operates in the UHF band (917~923.5 MHz) and microwave band (2.4~2.45 GHz). In order to obtain the dual-band operation, the dipole structure and meander parasitic elements are proposed as the ${\lambda}/2$ and $1{\lambda}$ dipole antenna, respectively. The radiating dipole structure in the microwave band acts as the coupled feed for the meander parasitic elements in the UHF band. The impedance bandwidth (VSWR < 2) of the proposed antenna covers 917~923.5 MHz (UHF band) and 2.4~2.45 GHz (Microwave band). Measured total efficiencies are over 45 % in the UHF band and over 70 % in the microwave band. Peak gains are over 0.18 dBi and 2.8 dBi in the UHF and microwave band with an omni-directional radiation pattern, respectively.

Compact Dual-band Double Dipole Quasi-Yagi Antenna with V-shaped Ground Plane (V-모양 접지면을 가지는 소형 이중 대역 이중 다이폴 준-야기 안테나)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.436-441
    • /
    • 2018
  • In this paper, a design method for a compact double dipole quasi-Yagi antenna with a V-shaped ground plane operating in dual bands including 2.45 GHz and 5 GHz wireless LAN frequency bands is studied. First, a quasi-Yagi antenna operating in the 2.45 GHz band is designed, and a V-shaped ground plane is used instead of a conventional strip ground plane to reduce the length of the antenna. A second dipole is connected to the dipole driver of the quasi-Yagi antenna for 2.45 GHz band and a director is appended for 5 GHz band operation. A prototype of the proposed dual-band antenna operating at 2.45 GHz WLAN band and 4.57-7.11 GHz band is fabricated on an FR4 substrate with a dimension of 40 mm by 55 mm. Fabricated antenna shows frequency bands of 2.33-2.75 GHz and 4.38-7.5 GHz for a voltage standing wave ratio less than 2. Measured gain remains more than 4 dBi in both bands.

Dual-band L-section Impedance Transformer (이중 대역 L형 임피던스 변환기)

  • Park, Myun-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.67-71
    • /
    • 2010
  • This paper proposes new dual-band impedance transformers based on the L-section circuit topology. The proposed circuits consist of a transmission line section with a stub line either at the source or at the load end. The dual-band operating conditions are analyzed in detail and simple design equations are derived in terms of the line lengths and impedances for the different circuit topologies and load conditions. The dual-band operation is confirmed through the design, fabrication and measurement in microstrip circuits based on the proposed method.

Dual Band Branch Line Coupler Using CRLH Transmission Lines (CRLH 전송 선로를 이용한 이중 대역 가지 선로 결합기)

  • Park, Min-Woo;Koo, Ja-Kyung;Lee, Jun;Lim, Jong-Sik;Ahn, Dal
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.223-225
    • /
    • 2009
  • 본 논문에서는 CRLH 전송 선로를 이용한 스터브 구조의 이중 대역 가지선로 결합기를 제안한다. 기존의 스터브 구조의 이중 대역 가지 선로 결합기는 동작하는 두 주파수가 근접할수록 스터브 선로의 임피던스가 증가해 구현이 불가능 하다. 제안된 이중 대역 가지선로 결합기는 비교적 근접한 1800MHz와 2300MHz 두 주파수에서 동작한다. 고 임피던스 스터브 선로는 이중 대역 소자 설계에 유용한 CRLH 전송 선로를 사용하여 구현 된다. 두 주파수에서 측정된 삽입 손실은 이상적인 결합기에 비해 최대 1.88dB의 오차가 났으며 두 출력 포트 사이의 위상차는 $1^{\circ}$미만 이다. 동작하는 두 주파수의 비는 1.28:1로 비교적 작은 차이를 보인다.

  • PDF

Design of The Dual-band Resonator for Magnetic Resonance Wireless Power Transfer (자기공진방식 이중대역 무선전력전송 공진기 설계)

  • Yoon, Nanae;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.41-45
    • /
    • 2015
  • In this paper, the single port dual-band resonator for magnetic resonance wireless power transfer is proposed. The proposed dual-band resonator is consists of 20 turns spiral coil, a single loop, matching circuit, lumped elements, and a single port. The two sides of the matching circuit are connected to via holes. The spiral coil is operated at MF-band and single loop is operated at HF-band, respectively. We use two of the same structure resonators and simulated and the power transfer efficiency was calculated. The efficiency of simulation and measurement is above 60% at the MF and HF bands, and the distance is 100 mm.

Design of HF-UHF dual Band Tag Antenna (HF-UHF RFID 이중대역 태그 안테나 설계)

  • Yoon, Nanae;Nam, Havan;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.75-79
    • /
    • 2015
  • In this paper, a dual band antenna with the operating frequency in HF and UHF band was proposed. The antenna structure consists of three spiral turns coil in the bottom side to generate the HF frequency of 13.56 MHz. In the top of the antenna, an inverted-spiral dipole structure is used to create the UHF frequency of 922 MHz. The dual band antenna was optimized to reduce size with $80mm{\times}40mm{\times}0.8mm$ dimension. The antenna presents the omnidirectional characteristic with high gain. To validate the theoretical design, the antenna was simulated using FR-4 substrate and verified the simulation results.

Dual-Band Class-F Power Amplifier based on dual-band transmission-lines (이중 대역 전송선로를 활용한 이중 대역 F급 전력 증폭기 개발)

  • Lee, Chang-Min;Park, Young-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, highly efficient dual-band class-F power amplifiers(PAs) for cellular and WLAN bands are suggested and implemented. For the first step, single-band class-F amplifiers at 840MHz, 2.4GHz are designed using commercial E-pHEMT FETs. The performance of two single band PAs are as much as 81.2% of efficiency with the output power of 24.4dBm with 840MHz PA and 93.5% of efficiency with 22.4dBm from the 2.4GHz. For the dual-band class-F PA, the harmonic controlling circuit with ideal SPDT switch was suggested. The length of transmission line is variable by a SPDT switch. As a results, the operation in 840MHz showed the peak efficiency of 60.5% with 23.5dBm, while in 2.4GHz mode the efficiency was 50.9% with the output power of 19.62dBm. Besides, it is shown that the harmonic controller of class-F above 2Ghz could be implemented on the low cost FR-4 substrate.

Dual-Band Filter Using Heterogeneous Resonators (이종 공진기를 이용한 이중 대역 통과 필터)

  • Kim, Kyoung-Keun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.253-261
    • /
    • 2010
  • In this paper, the design and the fabrication of dual bandpass filter using heterogeneous resonators is presented. Each resonator would not have an effect on each resonant frequency. Two types of resonators are designed to have different fundamental resonant frequencies, one for the lower passband and the other for the upper passband. In the lower band, half and quarter wavelength resonators were used. In the upper band, a dual-mode resonator was used for adjusting bandwidth. In the upper pass band frequency, resonators of lower passband acts as the input and output. For WLAN, Proposed filters with different second passband frequencies at 2.45/5.2 GHz and 2.45/5.8 GHz are designed and fabricated.

Design of Dual Band Wireless LAN Transmitter Using DGS (DGS를 이용한 이중대역 무선 랜 송신부 설계)

  • Kang Sung-Min;Choi Jae-Hong;Koo Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.75-80
    • /
    • 2006
  • This paper has proposed a novel dual band transmitter module which can be operating either as an amplifier or as a frequency multiplier according to the input frequency. A conventional dual band transmitter consists of separate amplifiers operating at each frequency band, but the proposed dual band module operates as an amplifier for the IEEE 802.11b/g signal, and as a frequency doubler for the IEEE 802.11a signal according to input frequency and bias voltage. In this paper, we have obtained sharp stop band characteristics by using microstrip DGS(Defected Ground Structure) to suppress the fundamental frequency of the frequency doubler as well as the second harmonic of the amplifier. From measurement result, second harmonic suppression is below -59dBc in the amplifier mode, and fundamental suppression is below -35dBc in the frequency doubler mode. And the designed module has 17.8dBm output P1dB at 2.4GHz and 10.1dBm power for 5.8GHz output, and the output power in the two modes are 0.8dB and 2.8dB larger than the module with ${\lambda}g/4$ reflector, respectively.

A Study on dual-band Wilkinson power divider with ${\pi}$-shaped parallel stub transmission lines for WLAN (${\pi}$-형 병렬 스터브 전송선로를 이용한 WLAN용 이중대역 Wilkinson 전력 분배기에 대한 연구)

  • Jo, Won-Geun;Kim, Dong-Seek;Ha, Dong-Ik;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.105-112
    • /
    • 2010
  • Recently, wireless communication systems have been developed and the circuits which operate with the broad-band for multiband uses were introduced. However, broad-band circuits have problems that inevitably increase the size. Dual-band circuit operates only two frequency, therefore, it will be able to miniaturize through unnecessary decreased elements. The Wilkinson power divider is the one of the most commonly used components in wireless communication system for power division. Nowaday, the Wilkinson power divider is also demanded dual-band. In this paper, I propose miniaturized dual-band Wilkinson power divider operating at 2.45 GHz and 5.2 GHz for IEEE 802.11n standard. Proposed dual-band Wilkinson power divider is used in parallel stub line. The design is accomplished by transforming the electrical length and impedance of the quarter wave sections of the conventional Wilkinson power divider into dual band ${\pi}$-shaped sections.