• 제목/요약/키워드: 이족로봇

검색결과 141건 처리시간 0.041초

이족 휴머노이드 로봇의 유연한 보행을 위한 학습기반 뉴로-퍼지시스템의 응용 (Use of Learning Based Neuro-fuzzy System for Flexible Walking of Biped Humanoid Robot)

  • 김동원;강태구;황상현;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.539-541
    • /
    • 2006
  • Biped locomotion is a popular research area in robotics due to the high adaptability of a walking robot in an unstructured environment. When attempting to automate the motion planning process for a biped walking robot, one of the main issues is assurance of dynamic stability of motion. This can be categorized into three general groups: body stability, body path stability, and gait stability. A zero moment point (ZMP), a point where the total forces and moments acting on the robot are zero, is usually employed as a basic component for dynamically stable motion. In this rarer, learning based neuro-fuzzy systems have been developed and applied to model ZMP trajectory of a biped walking robot. As a result, we can provide more improved insight into physical walking mechanisms.

  • PDF

이족 보행 로봇의 초기 자세에 따른 걸음새 해석에 관한 연구 (A Study on the Gait Analysis for Initial Posture of a Biped Robot)

  • 노경곤;정진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.301-303
    • /
    • 2001
  • This paper deals with the biped robot gait on changing the initial postures. Gait of a biped robot depends on the constraints of mechanical kinematics and initial posture. Also biped robot's dynamic walking stability is investigated by ZMP(Zero Moment Point). The path trajectory. with the knee joint bent like a human, is generated and applied with the above considerations. To decrease trajectory tracking error, in this paper, a new initial posture similar to bird's case is proposed and realized with the real robot.

  • PDF

이족 보행로봇의 3차원 모의실험기 개발 (Development of 3-Dimensional Simulator for a Biped Robot)

  • 노경곤;김진걸;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2438-2440
    • /
    • 2004
  • This study is concerned with development of 3-Dimensional simulator of a biped robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a biped robot which have a prismatic balancing weight is conditional linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. To get a stable gait of a biped robot, stabilization equations with ZMP (Zero Moment Point) are modeled as non-homogeneous second order differential equations for each balancing weight type. A trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3-Dimensional graphic simulator is programmed to get and calculate the desired ZMP and the actual ZMP. Walking of 4 steps was simulated and verified. This balancing system will be applied to a biped humanoid robot, which consist Begs and upper body, at future work.

  • PDF

유전 알고리듬을 이용한 이족 보행로봇의 계단 오르기 수행 (Upstairs Walking of a Biped Robot Using Genetic Algorithm)

  • 김은수;김태규;김종욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.1059-1060
    • /
    • 2008
  • In this paper, using a genetic algorithm, consisting of six to seven degrees of freedom links, walking robot to up-stair that can walk to optimize energy and stability to generate. Walking robot to up-stairs of the four-step segmentation of the various situations that match the pace and pattern so that it can generate. It also generated using genetic algorithms to test for Matlab into the Robot Simulation of the humanoid experiment was used.

  • PDF

소프트 컴퓨팅 기법을 이용한 이족 로봇의 지능적 보행 (Intelligent walking of a biped robot using soft-computing method)

  • 이선구;송희준;김동원;서삼준;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.312-314
    • /
    • 2006
  • Researches on biped robot walking have been mostly focusing on walking on even surfaces. Therefore, robot walking has been only realized on pre-specified spaces with pre-specified movements according to the previous researches. In this paper a walking system for a biped robot using fuzzy system and neural networks to overcome those constraints. The system enables biped walking to be possible in various environments and with more complicated obstacels. For the purpose, a walking robot should recognize its surrounding environment and determine its movement. In the proposed system, a robot dynamically generates its walking trajectories of each joint by using neural networks when facing new obstacle such as stairs, and it maintains its walking stability by using closed loop fuzzy control system which manipulates the waist joints.

  • PDF

유전 알고리즘 기반의 최적 이족 로봇 보행 생성에 관한 연구 (Genetic Algorithm-Based Optimal Walking Trajectory Generation for Biped Walking Robot)

  • 한경수;공정식;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.169-172
    • /
    • 2002
  • This paper is concerned with walking trajectory generation by applying the genetic algorithm. The walking trajectory is generated though three via-points and genetic algorithm is employed to find velocity and acceleration at each via-point. Also genetic algorithm is applied for balancing joint trajectory. Fitness function is used for minimizing the trajectory. As a result, new algorithm generated the smooth trajectory. The proposed algorithm is verified by the experiment of biped walking robot developed in our Control laboratory, and we compared the result with the previous walking algorithm. It showed that the new proposed algorithm generated the better walking trajectory.

  • PDF

센서를 이용한 소형 이족 보행 로봇의 개발에 관한 연구 (A Study On The Development Of A Miniature Biped Robot Using Sensor)

  • 정창윤;이종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2433-2435
    • /
    • 2002
  • The purpose of this paper is to introduce a case study of developing a miniature biped robot. The biped robot has a total of twenty-one degrees of freedom(DOF) ; There are two legs which have six DOF each, two arms which have three DOF each and a waist which has three DOF. RC servo-motors were used as actuators. We have developed motor controller, sensor controller and ISA-interface card. Motor controller, PWM generator, can control eight motors Sensor controller is connected to eight FSR(Force Sensing Resistors). For high level controller communicate with low level controller, ISA-interface card has developed. For the stable walking, CMAC(Cerebellar Model Articulation Controller) neural network algorithm is applied to our system CMAC is robust at noise.

  • PDF

유전 알고리듬을 이용한 이족 보행 로봇의 계단 오르기 최적 보행 궤적 생성 (Optimal Trajectory Generation for Walking Up a Staircase of a Biped Robot Using Genetic Algorithm)

  • 김은숙;김만석;김종욱
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.373-381
    • /
    • 2009
  • In this paper, a humanoid robot is simulated and implemented to walk up a staircase using the blending polynomial and genetic algorithm. Using recently developed kinematics for a biped robot, four schemes for walking up a staircase are newly proposed and simulated separately. For the two schemes of landing a swaying leg on the upper stair, the joint trajectories of seven motors are particularly optimized to generate an energy-minimal motion with the guarantee of walking stability. The proposed scheme of walking upstair is validated by an experiment with a small humanoid robot.

지능형 제어기법 및 센서 인터페이스를 이용한 이족 보행 로봇의 동적보행 제어 (Dynamic Walking Control of Biped Walking Robot using Intelligent Control Method and Sensor Interface)

  • 고재원;임동철
    • 전기학회논문지P
    • /
    • 제56권4호
    • /
    • pp.161-167
    • /
    • 2007
  • This paper introduces a dynamic walking control of biped walking robot using intelligent sensor interface and shows an intelligent control method for biped walking robot. For the dynamic walking control of biped walking robot, serious motion controllers are used. They are main controller(using INTEL80C296SA MPU), sub controller(using TMS320LF2406 DSP), sensor controller(using Atmega128 MPU) etc. The used sensors are gyro sensor, tilt sensor, infrared sensor, FSR sensor etc. For the feasibility of a dynamic walking control of biped walking robot, we use the biped walking robot which has twenty-five degrees of freedom(D.O.F.) in total. Our biped robot is composed of two legs of six D.O.F. each, two arms of five D.O.F. each, a waist of two D.O.F., a head of one D.O.F.

이족 로봇을 위한 동적 보행 해석 (Dynamic Walking Analysis for Biped Robot)

  • 박인규;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2804-2807
    • /
    • 2000
  • This paper suggests a method of the forward dynamic analysis for the computer simulation on the analysis of the dynamic behavior for biped walking robot. The equations f motion of the system or the simulation are constructed by using the Method of the multibody dynamics which is powerful method for modeling of the complex biped system. For the simplicity of simulation, we consider that the sole of the contacting foot is affected by the reaction forces for tree structure system topology instead of the addition or deletion of the kinematic constraints. The ground reaction forces can be modeled using the simple spring and damper model at the three contacting points on the sole of the foot. For minimizing the errors of numerical integration, the number of equations of motion is minimized by adding the driving constraints or a controller instead of the direct driving torques.

  • PDF