• Title/Summary/Keyword: 이음 길이

Search Result 112, Processing Time 0.016 seconds

Re-review of the Structure of the Jeongsa-Kisun (Senior Envoy Ship) in the Joseon Dynasty from the Perspective of Professional Shipbuilding Engineering (조선통신사 정사 기선(騎船) 구조의 조선기술 연구)

  • HONG Sunjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.242-275
    • /
    • 2022
  • This study tries to reveal the structure of the "Kisun"(senior envoy ship) taken by senior envoys for the 10th to 12th visits to Japan from the perspective of professional shipbuilding engineering focusing on the theory of the ship in the travel logs of royal envoys to Japan (Sahaengrok) written by Joseon Tongsinsa that includes 12 visits to Japan for about 200 years from 1607 to 1811. The results of the study showed that the size of Kisun for the 10th to 12th envoy visits was 19 Pa (把) and a half in length and 6 Pa (把) and 2 Cheok (尺) in width. The height of the Sampan was found to be 2 Pa (把) and 1 Cheok (尺) based on records in Gyemisusarok and Jeungjeonggyorinji. The structure of Kisun was different for each visit but, it was found that Kisun was mainly composed of a main deck, bow (bow plate, stem plate), stern (stern plate), Sampan, Meonge (support), Garyong (support), Sinbang, Gungji, deck, two masts and sail, Gurejjak (mast support), Panok, stern Panok, Taru, dodger, anchor reel, stairs, rail, rudder, oar, and anchor. In addition, wood and iron nails were used together for connection. It was also found that the sail was made of herbage and cotton. This study found that Kisun, which was operated for the 10th and 12th envoy visits, was big in terms of length and height among the Joseon Tongsinsa fleet to show the authority and dignity of Joseon and that it had passages outside on the sides of the vessel and paddles were located between the sides and Panok structure and rails were installed on four sides on the Panok, improving stability and linear beauty. The walls of Panok were decorated with the royal Dancheong pattern and fancy murals. In addition, it was found that they wished for a safe voyage by drawing a demon face on the bow. Therefore, it was revealed that Kisun, which was taken by envoys as recorded in travel logs, was made by the state and equipped with structures and functions that enabled international voyages.

Dynamic response of segment lining due to train-induced vibration (세그먼트 라이닝의 열차 진동하중에 대한 동적 응답특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.305-330
    • /
    • 2023
  • Unlike NATM tunnels, Shield TBM tunnels have split linings. Therefore, the stress distribution of the lining is different even if the lining is under the same load. Representative methods for analyzing the stress generated in lining in Shield TBM tunnels include Non-joint Mode that does not consider connections and a 2-ring beam-spring model that considers ring-to-ring joints and segment connections. This study is an analysis method by Break-joint Mode. However, we do not consider the structural role of segment lining connections. The effectiveness of the modeling is verified by analyzing behavioral characteristics against vibration loads by modeling with segment connection interfaces to which vertical stiffness and shear stiffness, which are friction components, are applied. Unlike the Non-joint mode, where the greatest stress occurs on the crown for static loads such as earth pressure, the stress distribution caused by contact between segment lining and friction stiffness produced the smallest stress in the crown key segment where segment connections were concentrated. The stress distribution was clearly distinguished based on segment connections. The results of static analysis by earth pressure, etc., produced up to seven times the stress generated in Non-joint mode compared to the stress generated by Break-joint Mode. This result is consistent with the stress distribution pattern of the 2-ring beam-spring model. However, as for the stress value for the train vibration load, the stress of Break-joint Mode was greater than that of Non-joint mode. This is a different result from the static mechanics concept that a segment ring consisting of a combination of short members is integrated in the circumferential direction, resulting in a smaller stress than Non-joint mode with a relatively longer member length.