• 제목/요약/키워드: 이용희

검색결과 8,864건 처리시간 0.037초

생물다양성에 대한 기후변화의 영향과 그 대책 (Effects of climate change on biodiversity and measures for them)

  • 안지홍;임치홍;정성희;김아름;이창석
    • 한국습지학회지
    • /
    • 제18권4호
    • /
    • pp.474-480
    • /
    • 2016
  • 본 연구에서는 지구적 차원에서 생물다양성의 성립 배경과 그동안 일어난 변화 그리고 기후변화가 생물다양성 및 인간에 미치는 영향을 밝히고 그 영향을 줄이기 위한 대안을 제시하였다. 생물다양성은 생명체의 풍부한 정도이며, 생물을 구분하는 모든 수준에서의 다양성을 종합적으로 의미한다. 즉, 생물다양성은 유전자, 종 그리고 생태계 전반과 그들의 상호작용을 아우른다. 이는 생태계의 기반을 구성하며, 모든 사람들이 필수적으로 의존하는 서비스를 제공한다. 그럼에도 불구하고 오늘날 생물다양성은 주로 인간 활동에 의해 점점 더 위협받고 있다. 지구상의 생물은 생명이 탄생한 이래 약 40억년의 역사를 통해 다양한 환경에 적응하고 진화한 결과, 약 1000만 내지 3000만종으로 추정되는 다양한 생물이 존재하게 되었다. 생물다양성을 구성하는 무수한 생명들은 각각의 고유한 특성을 가지고 있으며 다양한 관계 속에 얽혀 있다. 우리들이 현재 생활하고 있는 지구의 환경도 이러한 생물체의 방대한 연관성과 상호작용에 의해 긴 세월 동안 만들어져 왔으며, 인류도 하나의 생물로서 다른 생물들과 관계를 맺으며 살아가고 있다. 이러한 주위의 생물들이 없다면 사람도 살아갈 수 없다. 그러나 인류는 최근 수 백 년 간 과거의 평균 멸종속도를 1000배 가량이나 가속시켜 왔다. 우리는 미래 세대의 풍요로운 삶을 위해서라도 생물다양성을 보전하는 한편, 지속가능하게 이용할 책임이 있다. 우리나라는 세계 어느 국가보다도 빠른 경제 성장을 이루어왔으나, 동시에 이는 남북으로 길게 뻗은 반도 국가라는 지리적 특성에 의해 본래 풍부했던 생물다양성을 빠르게 소실시키는 결과를 야기하였다. 한국인은 오랫동안 농업, 임업 그리고 어업을 해오는 과정에서 자연과의 공존을 통해 독특한 고유의 문화를 창조하였다. 그러나 근래 서구문명의 유입과 과학 기술의 발전 과정에서 이러한 자연과의 관계는 멀어지게 되었으며, 자연과 문화 사이의 조화로운 조합에 의해 창출된 고유한 풍토는 점점 더 사라지고 있다. 한국의 인구는 세계 인구가 지속적으로 증가하는 것과는 반대로 점차 줄어들 것으로 예측되고 있다. 이 시점에서 우리는 인구 감소에 의한 자연의 회복에 발맞추어 급속한 인구 증가 및 경제 성장으로 인해 훼손된 생물다양성을 복원할 필요가 있다. 지구상에 생명이 탄생한 이래 다섯차례의 대멸종이 있었다. 현대의 대멸종은 매우 급속히 진행되고 있으며, 인간 활동에 의한 영향이 주요 원인인 점에서 이전의 것과 구분된다. 기후변화는 실제로 일어나고 있으며, 생물다양성은 이러한 변화에 매우 취약하다. 만약 생명체가 변화하는 환경에서 '진화를 통한 적응', '생존가능한 다른 지역으로의 이주' 등과 같은 생존 방법을 찾아내지 못한다면 이들은 절멸할 것이므로, 기후변화가 지속된다면 생물다양성은 극도로 훼손될 수 밖에 없다. 따라서 우리는 이러한 훼손정도를 최소화하기 위해 기후변화가 생물다양성에 미치는 영향을 보다 적극적이고 심도있게 파악할 필요가 있다. 생물계절의 변화, 식생 이동을 비롯한 분포 범위의 변화, 생물 간 상호작용의 부조화, 먹이 사슬 이상에 기인한 번식 및 생장률 감소, 산호초 백화현상 등이 기후변화에 미치는 영향으로 등장하고 있다. 질병의 확산, 식량 생산 감소, 작물 경작지 범위 변화, 어장 및 어업시기의 변화 등은 인간에 대한 영향으로 나타나고 있다. 기후변화 문제를 해결하기 위해 우선, 우리는 온실 가스 배출량을 감소시켜 기후변화 완화를 시도할 필요가 있다. 그러나 현재 우리가 온실가스 배출을 당장 멈추더라도, 기후변화는 당분간 지속될 전망이다. 이런 점에서, 기후변화 적응 전략을 준비하는 것이 더 현실적이 될 수 있다. 생물다양성에 대한 기후변화 영향의 지속적 모니터링 및 보다 적합한 모니터링 체계 구축이 선행과제가 될 수 있다. 생물다양성이 성립할 수 있는 생태적 공간의 확보, 이동 보조 및 남북을 이어주는 수평 및 저지대와 고지대를 이어주는 수직적 생태네트웍이 기후변화에 따른 생물다양성의 적응을 돕는 대안으로 추천될 수 있다.

폐암 세포에서 기저 상태와 TNF-${\alpha}$ 자극 시 NF-${\kappa}B$의 활성화 (Activation of NF-${\kappa}B$ in Lung Cancer Cell Lines in Basal and TNF-${\alpha}$ Stimulated States)

  • 황보빈;이승희;유철규;이춘택;한성구;심영수;김영환
    • Tuberculosis and Respiratory Diseases
    • /
    • 제52권5호
    • /
    • pp.485-496
    • /
    • 2002
  • 연구배경 : Nuclear factor ${\kappa}B$ (NF-${\kappa}B$)는 면역기능, 급성기 반응, 세포주기 조절 등 다양한 세포활동을 조절하는 전사인자로서 외부 자극에 의해 세포질에 존재하던 NF-${\kappa}B$가 핵 속으로 이동되어 여러 유전자의 ${\kappa}B$ element에 결합하여 그 유전자의 전사를 가져온다. 최근 들어 암의 발생과 증식 및 전이에 있어 NF-${\kappa}B$의 역할이 주목받고 있다. 즉, 여러 종류의 암세포에서 NF-${\kappa}B$의 과발현 및 지속적인 활성화가 알려져 NF-${\kappa}B$와 암의 발생 및 증식과의 관련성이 제시되고 있고, NF-${\kappa}B$의 항 아포프토시스 기능은 암세포의 생존에서 중요한 역할을 하는 것으로 이해되고 있다. 또한 ICAM-l, VCAM-l 등 세포 부착물질의 발현에 영향을 끼쳐 암 전이와의 관련성도 제시되고 있다. 폐암에서 NF-${\kappa}B$의 역할에 관한 연구는 많지 않은 상태로 폐암 조직 및 폐암 세포주에서 p50과 c-Rel의 과발현이 보고된 바 있다. 그러나 NF-${\kappa}B$의 과발현이 NF-${\kappa}B$의 활성화를 의미하는 것은 아니며 현재까지 폐암 세포에서 NF-${\kappa}B$의 활성화 유무에 관한 연구는 없는 실정이다. 방 법 : 본 연구에서는 정상 기관지 세포주와 폐암 세포주에서 기저 상태와 외부 자극에 의한 NF-${\kappa}B$의 활성화를 비교하여 폐암 세포에서 NF-${\kappa}B$의 활성도를 평가하였다. 정상 기관지 상피세포로는 BEAS-2B 세포주를 사용하였고 폐암 세포주로는 A549, NCI-H358, NCI-H441, NCI-H522, NCI-H2009, NCI-H460, NCI-H1229, NCI-H1703, NCI-H157, NCI-H187, NCI-H417, NCI-H526 등 12종을 실험에 사용하였다. NF-${\kappa}B$의 활성화는 p65와 p50의 핵내 발현과 electrophoretic mobility shift assay (EMSA)를 이용한 NF-${\kappa}B$ DNA binding activity로 평가하였다. 결 과 : NCI-H358과 NCI-H460 세포를 제외한 모든 폐암 세포주와 BEAS-2B 세포의 기저상태에서 핵 단백질내에 p65와 p50의 발현이 관찰되었다. TNF-$\alpha$로 자극하고 30분이 경과한 후에는 핵 내 p65와 p50의 발현이 증가하였다. NCI-H358과 NCI-H460 세포에서는 기저 상태와 TNF-${\alpha}$ 자극 시 핵 단백질 내의 p65의 발현이 관찰되지 않았고 TNF-${\alpha}$ 자극했을 때에도 p65의 발현은 증가하지 않았다. 그러나 이 두 세포주에서는 TNF-${\alpha}$로 자극 시 p50보다 분자량이 작은 두 종의 단백질의 발현이 증가되어 p50의 변형된 형태로 생각되었다. 기저 상태에서의 NF-${\kappa}B$의 DNA 결합능은 실험에 사용한 모든 세포주에서 거의 관찰되지 않았고 TNF-${\alpha}$ 자극 시 유의하게 증가하였다. TNF-${\alpha}$ 자극으로 활성화된 NF-${\kappa}B$ complex는 NCI-H358 과 NCI-H460을 제외한 모든 세포주에서는 p50/p65 heterodimer로 확인되었고 NCI-H358과 NCI-H460에서는 변형된 p50/p50 homodimer가 활성화되었다. 결 론 : 이상의 결과로 일부 폐암 세포주에서 외부 자극으로 활성화된 NF-${\kappa}B$ complex의 구성에 차이를 보였지만 전체적으로는 정상 기관지 세포주와 비교해 폐암 세포해서 NF-${\kappa}B$ 활성화에 있어 큰 차이가 없었다.

비소세포성 폐암에서 근치적 방사선치료 성적과 예후인자 분석 (The Results of Definitive Radiation Therapy and The Analysis of Prognostic Factors for Non-Small Cell Lung Cancer)

  • 장승희;이경자;이순남
    • Radiation Oncology Journal
    • /
    • 제16권4호
    • /
    • pp.409-423
    • /
    • 1998
  • 목적 : 비소세포성 폐암 환자에서 근치적 방사선 치료 단독 또는 항암화학요법과 병용으로 치료했을 때, 환자의 임상적 양상, 실패 양상, 생존율, 생존에 영향을 미치는 인자 및 방사선치료와 연관된 부작용에 대하여 알아보기 위하여 본 연구를 시행하였다. 대상 및 방법 : 1982년 3월부터 1996년 4월까지 비소세포성 폐암으로 이화대학병원 치료방사선과에서 근치적 목적의 방사선치료를 시행받은 70명의 환자에 대한 치료 결과를 후향적으로 분석하였다. 환자의 병기는 1기 2례, 2기 6례, 3-A기 30례, 3-B기 29례, 4기가 3례였다. 방사선치료는 6MV X-선을 이용하여 일일선량 1.8y-2.0Gy씩 주 5회 조사하였고, 총방사선량은 50.4-72.0Gy(중앙값 59.4Gy)였다. 전체 환자 중 34례(47$\%$)에서 유도 또는 동시 화학요법이 시행되었고 대부분 etoposide와 cisplatin이 포함된 복합화학요법이었다. 관찰조사가 사망 또는 연구시점까지 가능했던 경우가 43례(61$\%$)였고 생존율은 Kapian-Meier 방법으로 분석하였다. 결과 : 전체 환자의 생존율은 1년 63$\%$, 2년 29$\%$, 3년 26$\%$였고, 중앙생존기간은 17개월이였으며, 무병생존율은 1년 23$\%$, 2년 16$\%$였다. 각 병기별 전체 1년 생존율은 1기 100$\%$, 2기 80$\%$, 3기 61$\%$, 4기 50$\%$였고, 3기 환자만의 생존율은 1년 61$\%$, 2년 23$\%$, 3년 20$\%$였고, 중앙생존기간은 15개월이었다. 방사선치료 후 완전관해가 11례(16$\%$), 부분관해가 35례(50$\%$)인 반면, 국소제어된 경우는 30례(43$\%$)로서, 이 중 24례(80$\%$)에서 치료실패에 대한 추적관찰이 가능하였으며, 추적된 24례에서 치료실패를 보인 14례(58$\%$)중 6례(43$\%$)는 국소재발, 6례(43$\%$)는 원격전이, 2례(14$\%$)는 국소재발과 원격전이가 동반된 경우로서 전체 환자 중 16례(23$\%$)에서 국소치유를 관찰할 수 있었다. 원격전이에 대한 추적관찰이 가능한 50례 중 23례(46$\%$)에서 원격전이를 보였다. 근치적 방사선 치료만 시행한 군의 1년 생존율은 59$\%$, 유도 또는 동시 화학요법이 복합된 군은 68$\%$로서 두 군간의 생존율 차이는 다변량분석에서 통계학적 의의가 있었고(p=0.0049), 3기 환자만의 경우 방사선치료 단독군의 1년 생존율은 51$\%$, 유도 또는 동시 화학요법 병행군은 68$\%$로서 통계학적으로 유의한 생존율 차이가 있었다(p=0.0015). 단변수 변량분석에서 전체환자는 병기(p=0.015) 및 국소제어유무(p=0.0001)가, 3기 환자군은 유도 또는 동시 화학요법 병행 유무(p=0.0488), 시기에 무관한 화학요법 시행 유무(P=0.001) 및 국소제어 유무(p=0.0001)가 통계적 유의성이 있었으며, 다변수 변량분석에서 전체 환자 또는 3기 환자만을 대상으로 할 때 병기(p=0.0001), 치료전 전신수행능력(p=0.001), 유도 또는 동시 화학요법 병행유무(p=0.0015), 총방사선량(p=0.0049), 국소제어 유무(P=0.0001)가 통계적 의의가 있었다. 방사선치료와 관련된 합병증은 식도염, 방사선폐렴, 혈액학적 부작용, 피부염이었으며, 2례의 치명적인 방사선폐렴이 관찰되었다. 결론 : 비소세포성 폐암 환자에서 고식적인 방사선 치료만으로는 만족할만한 생존율을 얻기 어려우므로 원격전이 제어에 필요한 적절한 복합화학요법의 추가가 필요하고, 국소제어율을 높이기 위해서는 수술을 병용하는 다원적 치료나 충분한 방사선량을 조사하기 위한 다분할조사방법의 활용 등 적극적인 치료가 필요하다.

  • PDF

핵의학 체외검사실에서 시약 lot간 parallel test 시 변이 분석 (Analysis of Variation for Parallel Test between Reagent Lots in in-vitro Laboratory of Nuclear Medicine Department)

  • 채홍주;천준홍;이선호;유소연;유선희;박지혜;임수연
    • 핵의학기술
    • /
    • 제23권2호
    • /
    • pp.51-58
    • /
    • 2019
  • 핵의학 체외 검사실 에서는 시약 Lot가 변경될 때, Lot 간의 결과가 신뢰성이 있는지를 판단하기 위해 Lot 간 동등성 검사(comparability test between reagent lots) 또는 시약 병행 검사(reagent parallel test)를 시행하는데, 다수의 국내 검사실에서는 두 lot 간 결과 차이로부터 %difference를 구하여 저농도에서는 20% 이내, 중 고농도에서는 10% 이내로 설정하고 있으며 범위를 벗어 날 경우 재검사 시행으로 범위를 맞추는 실정이다. 따라서 본원의 핵의학 체외 검사실에서 시행되는 몇 가지 검사를 선정하여 parallel test의 결과를 분석해보았고, 검사별 맞춤 %difference 값 선정에 도움 될 만한 참고 자료를 마련해 보고자 하였다. Thyroid-stimulating hormone(TSH), Free thyroxine(FT4), Carcinoembryonic antigen(CEA), CA-125, Prostate-specific antigen(PSA) 그리고 HBs-Ab, insulin, 7종목에 대해 2018 1월부터 2018년 11월까지의 기간 동안의 시약 lot 변화에 따른 정도 관리 물질의 결과를 분석하였다. TSH, F-T4, CEA, CA-125, PSA의 측정에는 IRMA의 원리를 이용한 RIA-MAT 280 system이 사용되었고, Insulin의 측정에는 TECAN 자동화 분주 장비와 GAMMA-10 측정 장비가 사용되었다. HBs-Ab의 측정에는 HAMILTON 자동화 분주 장비와 GAMMA-10 측정 장비가 사용되었다. 각각 전용 시약과 전용 칼리브레이터, 전용 정도 관리 물질이 사용되었다. 1. TSH [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(저농도) [14.8 / 4.4 / 3.7 / 0.0 ] C-2(중농도) [10.1 / 4.2 / 3.7 / 0.0] 2. FT4 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(저농도) [10.0 / 4.2 / 3.9 / 0.0] C-2(고농도) [9.6 / 3.3 / 3.1 / 0.0 ] 3. CA-125 [%diffrence Max / Mean / median] (P-value by t-test > 0.05) C-1(중농도) [9.6 / 4.3 / 4.3 / 0.3] C-2(고농도) [6.5 / 3.5 / 4.3 / 0.4] 4. CEA [%diffrence Max / Mean / median] (P-value by t-test > 0.05) C-1(저농도) [9.8 / 4.2 / 3.0 / 0.0] C-2(중농도) [8.7 / 3.7 / 2.3 / 0.3] 5. PSA [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(저농도) [15.4 / 7.6 / 8.2 / 0.0] C-2(중농도) [8.8 / 4.5 / 4.8 / 0.9] 6. HBs-Ab [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(중농도) [9.6 / 3.7 / 2.7 / 0.2] C-2(고농도) [8.9 / 4.1 / 3.6 / 0.3] 7. insulin [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(중농도) [8.7 / 3.1 / 2.4 / 0.9] C-2(고농도) [8.3 / 3.2 / 1.5 / 0.1] 모두 정도 관리 물질의 lot 변경 시에도 유의미한 차이가 없었으며 표본 수가 늘어남에 따라 검사실과 검사 종목 별 맞춤 허용 기준을 설정할 수 있을 것이라 기대할 수 있었다. 면역 방사 계수 측정법에서 비교적 검출률이 높은 종목들을 선정해서 일 것이라 판단되며 여러 번 재 측정된 결과 값이기 때문일 수도 있겠다. 대부분의 검사 결과에서 허용 기준인 10%에 크게 못 미치는 차이를 보였으며 저농도 target 값을 가진 경우에도 허용 기준인 20%에 가까운 수치를 보이진 않았다. 더 오랜 기간 동안의 관찰과 연구를 통해 평균의 균질화가 이루어진다면 종목 별 검사실 맞춤 허용 기준을 얻을 수 있을 것으로 판단되며 더 다양한 변수를 고려한 관찰과 연구도 필요할 것이다.