• Title/Summary/Keyword: 이완식 발파

Search Result 6, Processing Time 0.018 seconds

Vibration and Noise Characteristics of Spall Blasting Method (이완식 발파공법의 진동과 소음 특성)

  • Yang Hyung-Sik;Kim Nam-Soo;Kim Won-Beom;Choi Mi-Jin
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.19-25
    • /
    • 2005
  • Ground vibration, sound pressure and fragmentation size were measured at the construction site using the spall blasting method(SBM). nev were analyzed and compared to those or suggested method by the minister of construction and transportation(MOST). Vibration and sound pressure by SBM were slightly smaller than MOST method but fragmentation size were larger.

Characteristics of Vibration and Sound Pressure Transmission by Controlled Spall Blasting Method (이완식 제어발파의 진동.음압전달특성에 관한 연구)

  • Kim, Sik;Jeong, Young-Jun;Kim, Nam-Soo;Cho, Yong-So
    • Explosives and Blasting
    • /
    • v.21 no.3
    • /
    • pp.17-22
    • /
    • 2003
  • 발파작업에서 발생하는 공해로 인한 재산상의 피해나 정신적인 피해를 최소화하기 위하여 대부분의 현장에서 제어발파를 시행하고 있다. 이완식 제어발파는 발파의 규모가 일반발파와 비교하여 작고, 대상 구조물이 근거리에 위치하므로 그 전달특성이 다를 수 있다. 근거리에서 계측된 발파진동의 특징은 고주파이고 진동의 지속시간이 짧다. 본 연구는 국내의 8개 지역에서 계측한 자료를 분석하여 이완식 제어발파의 진동전달 특성에 관하여 국내의 현장에서 시공 전에 진동을 추정할 수 있는 진동전파식을 제안하였다. 또한 제어발파시에 사용하는 폐타이어를 부착한 철재매트에 의한 폭풍압의 저감 효과와 전달특성을 분석하였다.

Blast Design for Controlled Augmentation of Muck Pile Throw and Drop (발파석의 비산과 낙하를 조절하기 위한 발파 설계)

  • Rai, Piyush;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.360-368
    • /
    • 2010
  • The paper presents a case study from a surface mine where the controlled augmentation of throw and drop of the blasted muck piles was warranted to spread the muck piles on the lower berm of the bench. While the augmentation of throw increased the lateral spread and the looseness of the broken muck, the augmentation of drop significantly lowered the muck pile height for easy excavation by the excavators. In this light, the present paper highlights and discusses some pertinent changes in the blast design parameters for such specialized application of cast blasting in a surface mine, where a sandstone bench, with average height of 22-24 m was to be made amenable for excavation by 10 m3 rope shovels, which possessed maximum digging capability of up to 14 m. The results of tailoring the blast design parameters for augmentation of throw and drop are compared with the baseline blasts which were earlier practiced on the same bench by dividing the full height of the bench in 2-slices; upper slice (10-14 m high) and lower slice (12-15 m high). Results of fragment size, its distribution and total cycle time of excavator (shovel) are presented, and discussed.

Tunnel-Lining Analysis in Consideration of Seepage and Rock Mass Behavior (투수 및 암반거동을 고려한 터널 라이닝의 거동 분석)

  • Kong, Jung-Sik;Choi, Joon-Woo;Nam, Seok-Woo;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.359-368
    • /
    • 2006
  • After construction, time-variant seepage and long-term underground motion are representative factors to understand the abnormal behavior of tunnels. In this study, numerical models have been developed to analyze the behavior of tunnels associated with seepage and long-term underground motion. Possible scenarios have been investigated to establish causes-and-results mechanisms. Various parameters such as permeability of tunnel filter, seepage condition, water table, long-term rock mass load, size of damaged zone due to excessive blasting have been investigated. These are divided into two sub-parts depending on the tunnel type and major loading mechanisms depending on the types. For the soft ground tunnels, the behavior associated with seepage conditions has been studied and the effect of permeability change in tunnel-filter and the effect of water-table change which are seldom measurable are investigated in detail. For the rock mass tunnels, tunnel behavior associated with the visco-plastic behavior of rock mass has been studied and the long-term rock mass loads as a result of relaxation and creep have been considered.

Numerical Study on the Stability Analyses of Rock Slopes considering Non-linear Characteristics of Hoek-Brown Failure Criterion (Hoek-Brown 파괴기준의 비선형성을 고려한 암반사면 안정성 평가의 수치해석적 연구)

  • Chun, Byung-Sik;Lee, Jin-Moo;Choi, Hyun-Seok;Seo, Deok-Dong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.77-91
    • /
    • 2003
  • The Hoek-Brown failure criterion for rock masses developed first in 1980 is widely accepted and has been applied in a variety of rock engineering problems including slope analyses. The failure criterion was modified over the years because rock mass strength by the original failure criterion in 1980 was overestimated. The modified failure criterion, named Generalized Hoek-Brown Failure Criterion, was proposed with a new classification called the Geological Strength Index(GSI) in 1994. Generally, Hoek-Brown failure criterion is applied in numerical analyses of rock mass behaviors using equivalent Mohr-Coulomb parameters estimated by linear regression method. But these parameters estimated by this method have some inaccuracies to be applied and to be incorporated into numerical models and limit equilibrium programs. The most important issue is that this method cannot take account of non-linear characteristics of Hoek-Brown criterion, therefore, equivalent Mohr-Coulomb parameters is used as constant values regardless of field stress distribution in rock masses. In this study, the numerical analysis on rock slope stability considering non-linear characteristics of Hoek-Brown failure criterion was carried out. Futhermore, by the latest Hoek-Brown failure criterion in 2002, the revised estimating method of equivalent Mohr-Coulomb parameters was applied and rock mass damage criterion is introduced to account for the strength reduction due to stress relaxation and blast damge in slope stability.

  • PDF