• Title/Summary/Keyword: 이온 침투

Search Result 402, Processing Time 0.019 seconds

Impact of Application Rate of Non-ionic Surfactant Mixture on Initial Wetting and Water Movement in Root Media and Growth of Hot Pepper Plug Seedlings (비이온계 계면활성제 혼합물의 처리농도가 상토의 수분 보유 및 고추 플러그묘의 생장에 미치는 영향)

  • Choi, Jong-Myung;Moon, Byung-Woo
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • In developing soil wetting agent using polyoxyethylene nonylphenyl ether (PNE) and polyoxyethylene castor oil (1:1; v/v), the effect of application rates on changes in concentration of PNE, initial wetting of peatmoss + perlite (7:3) medium, and growth of hot pepper (Capsicum annuum L. 'Knockwang') plug seedlings were investigated. The elevation of application rates of wetting agent increased the amount of water retained by the root media. The treatment of 2.5 $mL{\cdot}L^{-1}$ showed similar water retention to + control ($AquaGro^L$ 3.0 $mL{\cdot}L^{-1}$). Most of the liquid wetting agent (LWA) incorporated during the medium formulation leached out in the first and second irrigation, then it decreased gradually until 10 times in irrigation. In investigation of the influence of LWA on position of water infiltrating into root media, the vertical water movements in treatments of 0.5, 1.0, and 1.5 $mL{\cdot}L^{-1}$ were much faster than those in 0.0 $mL{\cdot}L^{-1}$ (-control), but relative speed of water movement decreased by the elevation in application rate of LWA to 2.0 or 2.5 $mL{\cdot}L^{-1}$. The evaporative water loss of root media that to contained various rate of LWA and irrigated to reach container capacity was the fastest in -control among the treatments and it delayed as the application rate of LWA was elevated. The plant height of 22.2 cm in 0.5 $mL{\cdot}L^{-1}$ and stem diameter of 3.26 mm in 1.0 $mL{\cdot}L^{-1}$ were the highest among the treatments tested. The treatment of 1.0 $mL{\cdot}L^{-1}$ also had the heaviest fresh and dry weights such among treatments tested as 3.08 g and 0.861 g per plant, respectively. The elevated application rate over than 1.5 $mL{\cdot}L^{-1}$ resulted in decreased seedling growth. The results mentioned above indicate that optimum application rate of LWA is 1.0 $mL{\cdot}L^{-1}$.

Lithium Distribution in Thermal Groundwater: A Study on Li Geochemistry in South Korean Deep Groundwater Environment (온천수 내 리튬 분포: 국내 심부 지하수환경의 리튬 지화학 연구)

  • Hyunsoo Seo;Jeong-Hwan Lee;SunJu Park;Junseop Oh;Jaehoon Choi;Jong-Tae Lee;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.729-744
    • /
    • 2023
  • The value of lithium has significantly increased due to the rising demand for electric cars and batteries. Lithium is primarily found in pegmatites, hydrothermally altered tuffaceous clays, and continental brines. Globally, groundwater-fed salt lakes and oil field brines are attracting attention as major sources of lithium in continental brines, accounting for about 70% of global lithium production. Recently, deep groundwater, especially geothermal water, is also studied for a potential source of lithium. Lithium concentrations in deep groundwater can increase through substantial water-rock reaction and mixing with brines. For the exploration of lithim in deep groundwater, it is important to understand its origin and behavior. Therefore, based on a nationwide preliminary study on the hydrogeochemical characteristics and evolution of thermal groundwater in South Korea, this study aims to investigate the distribution of lithium in the deep groundwater environment and understand the geochemical factors that affect its concentration. A total of 555 thermal groundwater samples were classified into five hydrochemical types showing distinct hydrogeochemical evolution. To investigate the enrichment mechanism, samples (n = 56) with lithium concentrations exceeding the 90th percentile (0.94 mg/L) were studied in detail. Lithium concentrations varied depending upon the type, with Na(Ca)-Cl type being the highest, followed by Ca(Na)-SO4 type and low-pH Ca(Na)-HCO3 type. In the Ca(Na)-Cl type, lithium enrichment is due to reverse cation exchange due to seawater intrusion. The enrichment of dissolved lithium in the Ca(Na)-SO4 type groundwater occurring in Cretaceous volcanic sedimentary basins is related to the occurrence of hydrothermally altered clay minerals and volcanic activities, while enriched lithium in the low-pH Ca(Na)-HCO3 type groundwater is due to enhanced weathering of basement rocks by ascending deep CO2. This reconnaissance geochemical study provides valuable insights into hydrogeochemical evolution and economic lithium exploration in deep geologic environments.