• Title/Summary/Keyword: 이온화

Search Result 3,037, Processing Time 0.032 seconds

Divalent Cation-dependent Inactivation of N-type Calcium Channel in Rat Sympathetic Neurons (쥐 교감신경 뉴론 N형 칼슘통로의 2가 양이온의존성 비활성화)

  • Goo Yong-Sook
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.96-104
    • /
    • 2006
  • Experiments from several groups Including ours have demonstrated that $Ca^{2+}$ can enhance the inactivation of N-type calcium channels. However, it is not clear if this effect can be ascribed to a 'classic' $Ca^{2+}$-dependent inactivation (CDI) mechanism. One method that has been used to demonstrate CDI of L-type calcium channels is to alter the intracellular and extracellular concentration of $Ca^{2+}$. In this paper we replaced the external divalent cation to monovalent ion ($MA^+$) to test CDI. In the previous paper, we could separate fast (${\tau}{\sim}150ms$) and slow (${\tau}{\sim}2,500ms$) components of inactivation in both $Ba^{2+}$ and $Ca^{2+}$ using 5-sec voltage step. Lowering the external divalent cation concentration to zero abolished fast inactivation with relatively little effect on slow inactivation. Slow inactivation ${\tau}$ correspond very well with provided the $MA^+$ data is shifted 10 mV hyperpolarized and slow inactivation ${\tau}$ decreases with depolarization voltage in both $MA^+\;and\;Ba^{2+}$, which consistent with a classical voltage dependent inactivation (VDI) mechanism. These results combined with those of our previous paper lead us to hypothesize that external divalent cations are required to produce fast N-channel inactivation and this divalent cation-dependent inactivation is a different mechanism from classic CDI or VDI.

  • PDF

Chloride Threshold Value for Steel Corrosion considering Chemical Properties of Concrete (콘크리트의 화학적 특성을 고려한 철근 부식 임계 염소이온 농도)

  • Song, Ha-Won;Jung, Min-Sun;Ann, Ki Yong;Lee, Chang-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.75-84
    • /
    • 2009
  • The present study assesses the chloride threshold level for corrosion of steel in concrete by examining the properties of four different binders used for blended concrete in terms of chloride binding, buffering of cement matrix to a pH fall and the corrosion behaviour. As binders, ordinary Portland cement (OPC), 30% pulverised fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF) were used in a concrete mix. Testing for chloride binding was carried out using the water extraction method, the buffering of cement matrix was assessed by measuring the resistance to an artificial acidification of nitric acid, and the corrosion rate of steel in mortar with chlorides in cast was measured at 28 days using an anodic polarisation technique. Results show that the chloride binding capacity was much affected by $C_{3}A$ content and physical adsorption, and its order was 60% GGBS>30% PFA>OPC>10% SF. The buffering of cement matrix to a pH fall was varied with binder type and given values of the pH. From the result of corrosion test, it was found that the chloride threshold ranged 1.03, 0.65, 0.45 and 0.98% by weight of cement for OPC, 30% PFA, 60% GGBS and 10% SF respectively, assuming that corrosion starts at the corrosion rate of $0.1-0.2{\mu}A/cm^{2}$. The mole ratio of [$Cl^{-}$]:[$H^{+}$], as a new presentation of the chloride threshold, indicated the value of 0.008-0.009, irrespective of binder, which would be indicative of the inhibitive characteristic of binder.

Selective Solvation and Reasonable Solvation Number of Some Univalent Ions in Water-Ethanol Systems (물-에탄올 混合溶媒에서 몇가지 1가 이온들의 選擇的 溶媒和와 妥當한 溶媒和數)

  • Kim, Hag-Sung
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.589-597
    • /
    • 1995
  • In water-ethanol systems, the limiting equivalent conductances of electrolytes were obtained using conductometric method. Using TATB method, the limiting equivalent ionic conductances of Li+, Na+, K+, Cl-, and Br- ions were also obtained. The effective radii of corresponding ions were determined using Nightingale method. From the volume of the solvation shell, the four solvation numbers were suggested. The reasonable solvation numbers (hH2O+hO) were estimated by comparing the values obtained by from the various suggested methods. The isosolvation point of ion in water-ethanol estimated was found to be larger than that of in water-methanol. This result agree with ET (solvent polarity) values of solvents. From the reasonable solvation numbers of ions in water-ethanol, the selective solvents of corresponding ions in water-ethanol were obtained.

  • PDF

Mesurement of Collectively Accelerated Argon Ion Energy (집단 가속된 아르곤 이온의 에너지 측정)

  • 박인호;최은하
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.4
    • /
    • pp.425-430
    • /
    • 1995
  • 본 연구에서는 Marx Generator와 펄스 형성라인을 결합시켜 만든 VEBA(Versatile Electron Beam Accelerator)장치를 사용하여 아르곤 이온의 에너지를 식각 추적 방법을 써서 측정하였다. 이 장치에서 240kV, 30kA, 60ns의 전자빔이 발생되었다. 이 전자빔이 이극관을 통과하면서 이 때 주입된 아르곤 기체가 이온화되어 아르곤 이온이 얻어진다. 이렇게 형성된 이온은 가상적 음극에 의해 진공 전파관 속으로 가속되고 이를 전자빔과 분리한 후 알루미늄 박막으로 만든 식각 추적판을 때리도록 장치하였다. 이때 아르곤 이온이 뚫고 들어간 알루미늄 박막의 수로부터 이온의 에너지를 구하였다. 이렇게 얻어진 실험값은 이론값과 잘 일치하였다.

  • PDF

Local Thermal Equilibrium 모델에 의한 이차이온 질량분석의 정량화 방법

  • Gwak, Byeong-Hwa;Gwon, O-Jun
    • ETRI Journal
    • /
    • v.10 no.2
    • /
    • pp.63-69
    • /
    • 1988
  • SIMS(Secondary Ion Mass Spectrometry) 분석 데이터의 정량화 방법으로 이온주입에 의한 실험적 접근법과 LTE(Local Thermal Equilibrium) 모델을 사용한 준이론적 접근법 2가지가 주로 논의되고 있다. 본 고에서는 LTE 모델을 사용, SIMS data를 정량화하는 방법에 대하여 기술하였으며 아울러 BASIC language로 된 간단한 LTE 프로그램을 제시하였다.

  • PDF

A Study on the Application of Ion Crystallization Technology to the APR 1400 Liquid Waste Management System (핵종 이온 광물화 처리기술의 APR 1400 발전소 액체방사성폐기물관리계통 적용 위치에 대한 고찰)

  • Go, Kyung-Min;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.419-427
    • /
    • 2019
  • The application of ion crystallization technology was considered as a way to increase the operating efficiency and improve the operating performance of a liquid waste management system (LWMS) in the Advanced Power Reactor 1400 (APR 1400). Although ion crystallization technology has not been practically applied to Nuclear Power Plants (NPPs) until now, a previous experimental study demonstrated that it is possible to selectively remove at least 95% of various nuclide ions present in the liquid radioactive waste of NPPs. We reviewed the possibility of applying ion crystallization technology to the existing LWMS by applying the nuclide removal rate of ion crystallization technology and prepared a way to improve the existing LWMS in the APR 1400. Furthermore, we determined the optimized application location of ion crystallization technology in the existing LWMS by considering decontamination characteristics of the ion crystallization technology and the existing LWMS design features and operating experiences. The application of ion crystallization technology to the liquid waste collection tank, where liquid radioactive materials are collected, will have the least impact on the existing design while providing the greatest improvement. It is expected that the application of ion crystallization technology to the current APR 1400 or new NPPs would increase the operating efficiency of the LWMS and result in an improvement of system performance.

Hydrophilic Treatment of Porous Substrates for Pore-Filling Membranes (세공충진막을 위한 다공성 지지체 친수화 처리)

  • Dahye Jeong;Minyoung Lee;Jong-Hyeok Park;Yeri Park;Jin-Soo Park
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In this study, we employed anionic, cationic, and nonionic surfactants for the hydrophilization of porous substrates used in the fabrication of pore-filling membranes. We investigated the extent of hydrophilization based on the type of surfactant, its concentration, and immersion time. Furthermore, we used the hydrophilized substrates to produce pore-filling anion exchange membranes and compared their ion conductivity to determine the optimal hydrophilization conditions. For the ionic surfactants used in this study, we observed that hydrophilization progressed rapidly from the beginning of immersion when the applied concentration was 3.0 wt%, compared to lower concentrations (0.05, 0.5, and 1.0 wt%). In contrast, for the relatively larger molecular weight non-ionic surfactants, smooth hydrophilization was not observed. There was no apparent correlation between the degree of hydrophilization and the ion conductivity of the anion exchange membrane. This discrepancy suggests that an excessive hydrophilization process during the treatment of porous substrates leads to excessive adsorption of the surfactant on the sparse surfaces of the porous substrate, resulting in a significant reduction in porosity and subsequently decreasing the content of polymer electrolyte capable of ion exchange, thereby greatly increasing the electrical resistance of the membrane.