• Title/Summary/Keyword: 이온전도성

Search Result 488, Processing Time 0.025 seconds

Electrical Properties and Point Defect Types of Semiconducting Rutile (반도성 rutile의 전기적 성질 및 점결함 형태)

  • Baek, Seung-Bong;Kim, Myeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.931-937
    • /
    • 1998
  • The electrical conductivity of undoped mtile was measured in the oxygen partial pressure range of $1~10{-23}$atm and temperature range of $700~1300^{\circ}C$ to investigate the defect types and the electrical properties. The data(logu/logPoz) were divided into the five regions. Therefore the five dominant defect types such as $Ti_nO_{2n-1}$, Ti, Vo, Vo due to impurity, and n-p transition or p-type conduction with the Poz and the temperature were proposed. The formation enthalpies calculated from these experimental results were found to be 10.2eV for Ti, and 4. 92eV for Vo in intrinsic range.

  • PDF

Synthesis of Aminated Poly(ether imide) for the Preparation of Bi-polar Membranes and Their Application to Hypochlorite Production through the Surface Direct Fluorination (바이폴라막 제조를 위한 폴리에테르이미드의 아민화 합성 및 표면불소화를 통한 차아염소산 생성)

  • Kim, Cheong Seek;Kang, SuYeon;Rhim, Ji Won;Park, Soo-Gil
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.338-345
    • /
    • 2015
  • Poly(phenylene oxide) (PPO) and polyether imide (PEI) were sulfonated and aminated to create sulfonated poly(phenylene oxide) (SPPO) and aminated polyether imide (APEI), respectively. Characterization of the SPPO and APEI were performed via measurements of FTIR, thermogravimetry (TGA), swelling degree, ion exchange capacity (IEC), and ion conductivity. Next, the surfaces of these membranes were modified by surface fluorination at room temperature. The surface fluorinated SPPO and APEI membranes underwent characterization again for the mentioned measurements to determine any differences. The 3 types of bi-polar membranes were prepared by varying the IEC of the APEI at a fixed SPPO IEC value, which were applied to the low and high NaCl concentration of feed solution at the different current density, respectively. The hypochlorite concentration derived from the surface fluorinated membranes was dependent on the IEC of the APEI and ranged from 491 to 692 ppm at $80mA/m^2$. At low current density of $5mA/m^2$, the hypochlorite concentrations ranged from 18 to 28 ppm for the 4 hrs surface fluorinated membranes and their durability increased greatly.

Potential-dependent Complex Capacitance Analysis for Porous Carbon Electrodes (다공성 탄소전극의 전위에 따른 복소캐패시턴스 분석)

  • Jang, Jong H.;Yoon, Song-Hun;Ka, Bok H.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.255-260
    • /
    • 2003
  • The complex capacitance analysis was performed in order to examine the potential-dependent EDLC characteristics of porous carbon electrodes. The imaginary capacitance profiles $(C_{im}\;vs.\;log\lf)$ were theoretically derived for a cylindrical pore and further extended to multiple pore systems. Two important electrochemical parameters in EDLC can be estimated from the peak-shaped imaginary capacitance plots: total capacitance from the peak area and $\alpha_0$ from the peak position. Using this method, the variation of capacitance and ion conductivity in pores can be traced as a function of electric potential. The electrochemical impedance spectroscopy was recorded on the mesoporous carbon electrode as a function of electric potential and analyzed by complex capacitance method. The capacitance values obtained from the peak area showed a maximum at 0.3V (vs. SCE), which was in accordance with cyclic voltammetry result. The ionic conductivity in pores calculated from the peak position showed a maximum at 0.2 V (vs. SCE), then decreased with an increase in potential. This behavior seems due to the enhanced electrostatic interaction between ion and surface charge that becomes enriched at more positive potentials.

Influences of ${Nb_2}{O_5}$ and MnO Addition on the Electrical Properties of ${Pb_{0.6}}{Sr_{0.4}}{TiO_3}$Semiconducting Ceramics (${Nb_2}{O_5}$와 MnO 첨가가 ${Pb_{0.6}}{Sr_{0.4}}{TiO_3}$ 반도체 세라믹의 전기적 특성에 미치는 영향)

  • Moon, Jung-Ho;Kim, Keon;Kim, Seong-Ho;Kim, Yoon-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.10
    • /
    • pp.968-974
    • /
    • 2000
  • Nb$_2$O$_{5}$와 MnO 첨가에 따른 Pb$_{0.6}$Sr$_{0.4}$TiO$_3$반도체 세라믹의 미세구조와 전기적 특성은 유전특성, I(current)-V(voltage) 측정, 그리고 복소 임피던스 측정 등을 이용하여 고찰하였다. Nb 도핑량이 0.4 mol% 이하인 경우 Nb 도핑량에 따라 전도성과 입성장은 증가되었으나 그 이상의 도핑량에서는 Sr이나 Pb 공공의 생성으로 인하여 전도성이 감소되고 입성장도 억제되는 것을 관찰할 수 있었다. 0.4 mol% Nb-doped Pb$_{0.6}$Sr$_{0.4}$TiO$_3$에 0.01 mol% MnO를 첨가한 경우 비저항비($ ho$$_{max}$/$\rho$/min/)가 $10^2$에서 $10^4$으로 크게 향상되었다. 그리고 전이 온도 주변에서 여러 개의 변곡점을 지니는 비옴성 거동이 발견되었다. 이와 같은 현상은 입계에 존재하는 Mn 이온이 부분적으로 편석되어 표면 전하의 보상 효과에 영향을 미치는 것이라고 사료된다.

  • PDF

Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery (이차전지 음극활물질 Si/PC/CNF/PC 복합 소재의 전기화학적 특성)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.798-803
    • /
    • 2018
  • In order to use Si as an anode material for lithium-ion battery, the particle size was controlled to less than $0.5{\mu}m$ and carbon was coated on the surface with the thickness less than 10 nm. The carbon fiber was grown on the Si surface with 50~150 wt%, and the carbon coating was carried out once again. The Si composite material was mixed with dissimilar metals to increase the conductivity, and graphite was mixed to improve cyclic life characteristics. The physical and electrochemical characteristics of composite materials were measured with XRD, SEM, TEM and coin cell. The discharge capacity of Si/PC/CNF/PC was lower than that of Si/PC (Pyrolytic Carbon)/CNF (Carbon Nano Fiber). However, the cyclic life of Si/PC/CNF/PC was higher. Initial discharge capacity of 1512 mA h g-1 at 0.2 C rate and initial efficiency of 78% were shown. It also showed a capacity retention of 94% in 10 cycles.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

The Change of Soil Physicochemical Properties by Mixture Ratio of Inorganic Soil Amendments (무기성 토양개량제들의 혼합비율에 따른 토양이화학성의 변화)

  • Kim, Young-Sun;Kim, Tack-Soo;Ham, Suon-Kyu
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.271-278
    • /
    • 2009
  • This study was conducted to investigate the effect of the mixture ratio of the inorganic soil amendments on the soil physicochemical properties. In this experiment, three kinds of soil amendments which had similar pH, EC and particle size, the A, B and C, were tested. The mixture ratio of soil amendment were 0%, 3%, 5%, 7% and 10% (V/V) incorporated with sand which met to the USGA(United State of Golf Association) particle standard. To analyze the effects of amendment on chemical soil properties, pH, EC(electrical conductivity) and CEC(cation exchangeable capacity) were measured. The porosity, bulk density and hydraulic conductivity also measured to analyze the changes of physical properties. In the chemical properties, pH was significantly related to the mixture ratios of amendments, A and C(P<0.05), CEC and EC also related to the ratios of C(P<0.01). When the results were applied to the USGA standard of the soil physical properties, the optimum mixture ratios of each amendment were 3% in A and B, and 7~10% in C. To analyze the corelation of mixture ratio versus to physical character, volume of porosity was significantly related to the ratio of B (P<0.05), and showed similar corelation in porosity and hydraulic conductivity with ratio of C(P<0.05). These results indicate that types and mixture ratio of inorganic soil amendments should affect on soil physio-chemical properties of root zone on USGA sand green.

Improvement of Physicochemical Properties and Turfgrass Growth by Root Zone Mixture of Soil Amendment 'Profile' (토양개량제 '프로파일'의 혼합에 따른 토양의 물리화학성 및 한지형 잔디의 생육 개선)

  • Kim, Young-Sun;Lim, Hye-Jung;Ham, Soun-Kyu;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.262-271
    • /
    • 2017
  • This study was conducted to evaluate incorporation ratio of soil amendment 'Profile' to improve soil physicochemical properties and turfgrass growth. The soil amendment was added 0 (sand only), 3, 5, 7, and 10% to USGA Green-spec green sand soil. As incorporated with more 'Profile' amendment, soil electrical conductivity (EC), cation exchangeable capacity (CEC), capillary porosity and total porosity of root zone were increased than those of control, while bulk density and hydraulic conductivity decreased. Turfgrass index and clipping yield of creeping bentgrass grown in sand soil incorporated with 7% 'Profile' were improved than those of control. Correlation coefficient of turf color index and incorporation ratio of the soil amendment 'Profile' was found to show significantly positive correlation. These results indicated that application of the soil amendment 'Profile' to sand soil in golf course green improved turfgrass growth and quality by increasing CEC and porosity of root zone.

The Effects of Solvent Composition and Pressure on the Rate of Solvolysis of trans-$[Co(en)_2Cl_2]^+$, trans-$[Co(N-eten)_2Cl-2]^+$, trans-$[Co(N-meen)_2Cl-2]^+$ and trans-$[Co(tn)_2Cl-2]^+$ in Aceton-Water Mixture. Excess Free Energy & Free Energy Cycle and Reaction Mechanism (아세톤-물 혼합용매에서 trans-$[Co(en)_2Cl-2]^+$, trans-$[Co(N-eten)_2Cl-2]^+$, trans-$[Co(N-meen)_2Cl_2]^+$, trans-$[Co(tn)_2Cl_2]^+$ 착이온의 가용매 분해반응에 대한 압력과 용매조성의 영향. 반응메카니즘과 자유에너지 변화사이클 및 Excess 자유에너지)

  • Yu-Chul Park;Young-Je Cho
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.629-636
    • /
    • 1985
  • The rates of solvolysis of trans-$[Co(AA)_2Cl_2]^+$ in which AA indicates ethylenediamine(en), N-ethylethylenediamine (N-eten), N-methylethylenediamino (N-meen) and trimethylenediamine(tn) respectively have been investigated using conductometric and spectrophotometric methods at various pressure up to 2,000 bar in acetone-water mixture. The activation volumes (${\Delta}V^{\neq}) obtained from the pressure effect on rate constants were -0.2∼0.9 $cm^3mole^{-1}$ for en, -0.2∼0.6 $cm^3mole^{-1}$ for N-eten, -0.8∼6.0 $cm^3mole^{-1}$ for N-meen and 0.7∼7.0$cm^3mole^{-1}$ for tn. The rates of solvolysis of these complexes were analyzed by comparing with the results obtained from excess free energy ($G^E$) and free energy cycle. It was found that $S_N1$ character was increased with decreasing the pressure and increasing the content of acetone in the mixture solvent. In addition to that, the effect of charge separation on the mechanism of solvolysis was discussed.

  • PDF

Synthesis, Characterization and ESR Studies of New Copper(II) Complexes of Vicinal Oxime Ligands (Vicinal Oxime 리간드의 새로운 구리(II) 착물에 대한 합성, 특성 및 ESR 연구)

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.603-611
    • /
    • 2011
  • Ethoxylacetyl oxime ligands [HL, (1) and $H_2L^1$, (3)] react with copper(II) acetate monohydrate yield octahedral and square planar complexes, respectively. The complexes have been postulated due to elemental analyses, IR, UVVis. spectra, magnetic susceptibility, conductivity and ESR spectra. Molar conductance of the complexes in DMF indicates a non-ionic character. The ESR spectra of [$(L)_2Cu(H_2O)_2$], (2) complex at room temperature and 77K are characteristic of an axial symmetry ($d_{x2-y2}$) with covalent bond character and have a large line width typical of dipolar interactions. However, [$(L^1)Cu$], (4) complex in the solid state showed spectra of marked broadening and loss of hyperfine splitting confirming spinexchange interactions between the copper(II) sites. The spectrum of the doped copper(II) complex at room temperature showed super-hyperfine splitting from coordinated nitrogen atoms and it has an axial type ($d_{x2-y2}$) with covalent bond character and an essentially square-planar arrangement around the copper(II) ion. The spectrum of [$(L^1)Cu$], (4) in frozen methanol at 77K was characteristic of the triplet state of a dimer species and the distance found between the two copper(II) centers was calculated and is equal to 4.8 ${\AA}$.