• Title/Summary/Keyword: 이온빔 보조 증착

Search Result 58, Processing Time 0.022 seconds

The effect of different crystallization temperature of the hydroxyapatite coating produced by ion beam-assisted deposition on anodizing-treated titanium disks on human osteosarcoma cells (양극산화처리된 티타늄 표면에 이온빔보조증착방식을 이용한 수산화인회석 코팅시 소결온도의 차이가 조골세포에 미치는 영향)

  • Pae, Ah-Ran;Won, Hyun-Du;Lee, Richard Sung-Bok;Kim, Hyeong-Seob;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • Purpose: The aim of this study was to study the effect of hydroxyapatite (HA) coating crystallinity on the proliferation and differentiation of human osteosarcoma cells. Materials and methods: Surface roughness of the titanium disks increased by anodizing treatment and then HA was coated using ion beam-assisted deposition (IBAD). HA coating was crystallized by heat-treated at different temperature ($100^{\circ}C$, $300^{\circ}C$, $500^{\circ}C$, $800^{\circ}C$). According to the temperature, disks were divided into four groups (HA100, HA300, HA500, HA800). With the temperature, crystallinity of the HA coating was different. Anodized disks were used as control group. The physical properties of the disk surface were evaluated by surface roughness tests, XRD tests and SEM. The effect of the crystallinity of HA coating on HOS cells was studied in proliferation and differentiation. HOS cells were cultured on the disks and evaluated after 1, 3, 5, and 7 days. Growth and differentiation kinetics were subsequently investigated by evaluating cell proliferation and alkaline phosphatase activity. Results: Regardless of the heat-treated temperature, there is no difference on the surface roughness. Crystallinity of the HA was appeared in the groups of HA500, HA800. HOS cells proliferation, ALP activity were higher in HA500 and HA800 group than HA100 and HA300. Conclusion: Within the results of this limited study, heat treatment at $500^{\circ}C$ of HA coating produced by IBAD has shown greater effect on proliferation and differentiation of HOS cells. It is considered that further in vivo study will be necessary.

Effect of Surface Roughness on the Actuation of Ionic Polymer Metal Composites (표면 조도에 따른 이온성 고분자-금속 복합체의 구동특성)

  • Jung, Sunghee;Song, Jeomsik;Kim, Guoosuk;Lee, Sukmin;Mun, Museong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.586-590
    • /
    • 2006
  • As one of electro active polymers for soft smart materials, the ionic polymer metal composites (IPMC) are easy to produce through chemical reduction processing and show high displacements at low voltage. When the IPMC actuates, the deformation depends on a few factors including the structure of based membrane, species and morphology of the metal electrodes, the nature of cations and the level of hydration. As previously published, we have been studying on improvement of actuation through surface electrode modification of IPMC to grasp the effect of electrode morphology on actuation. This study is comparative experiments through the chemical reaction and deposition by ion beam assisted deposition (IBAD) in order to prepare the very thin and homogeneous surface electrode of IPMC. The IPMCs were prepared with different surface roughness of polymer membrane, and the influence of the surface roughness on the actuation was studied. By investigating the electrical properties and driving displacement, the actuating properties of IPMC with different surface roughness were studied.

A Study on the Fabrication of STS 316L Films by Ion Beam Deposition with Ion Source (이온빔 보조 증착법을 이용한 STS 316L 박막 합성에 관한 연구)

  • Lee, J.H.;Song, Y.S.;Lee, K.H.;Lee, K.H.;Lee, D.Y.;Yoon, J.K.
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.587-592
    • /
    • 2003
  • The thin films of 316L stainless steel were made on glass and S45C substrate by Ion beam assisted deposition with reactive atmosphere of argon and nitrogen. The films were deposited at the various conditions of ion beam power and the ratios of Ar/$N_2$gas. Properties of these films were analyzed by glancing x-ray diffraction method(GXRD), AES, potentiodynamic test, and salt spray test. The results of GXRD showed that austenite phase could be appeared by $N_2$ion beam treatment and the amount of austenite phase increased with the amount of nitrogen gas. The films without plasma ion source treatment had the weak diffraction peak of ferrite phase. But under the Ar plasma ion beam treatment, the strong diffraction peaks of ferrite phase were appeared and the grain size was increased from 12 to 16 nm. Potentiodynamic polarization test and salt spray test indicated that the corrosion properties of the STS 316L films with nitrogen ion source treatment were better than bulk STS 316L steel and STS 316L films with Ar ion source treatment.

Surface Electrode Modification and Improved Actuation Performance of Soft Polymeric Actuator using Ionic Polymer-Metal Composites (이온성고분자-금속복합체를 이용한 유연고분자 구동체의 표면특성 개선과 구동성 향상)

  • Jung, Sunghee;Lee, Myoungjoon;Song, Jeomsik;Lee, Sukmin;Mun, Museoung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.527-532
    • /
    • 2005
  • Ionic polymer metal composites (IPMC) are soft polymeric smart materials having large displacement at low voltage in air and water. The polymeric electrolyte actuator consists of a thin and porous membrane and metal electrodes plated on both faces, in impregnation electro-plating method. The response and actuation of actuator are governed. Among many factors governing the activation and response of IPMC actuator, the surface electrode plays an important role. In this study, the well-designed modification of electrode surface was carried out in order to improve the chemical stability well as electromechanical characteristics of the IPMC actuator. We employed Ion Beam Assisted Deposition (IBAD) method to prepare the topologically homogeneous thin surface electrode. After roughing the surface of Nafion membrane in order to get a larger surface area, the IPMC was prepared by impregnation for electro-plating and re- coating on the surface through traditional chemical deposition, followed by an additional surface treatment with high conductive metals with IBAD. It was observed that our IPMC specimen shows the enhanced surface electrical properties as well as the improved actuation and response characteristics under applied electric field.

EFFECTS OF THE ION BEAM ASSISTED DEPOSITION OF HYDROXYAPATITE ON OSSEOINTEGRATION OF THE ENDOSSEOUS IMPLANTS IN RABBIT TIBIAE (이온빔 보조 전자빔 수산화 인회석 증착이 골내 임플란트의 골유착에 미치는 영향)

  • Jung, Young-Chul;Han, Chong-Hyun;Lee, In-Seop;Lee, Hyeon-Jeong;Kim, Myeong-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.659-674
    • /
    • 2000
  • A large increase in the use of thin film coating of hydroxyapatite(HA) in implant dentistry is driven by the desire to take advantage of the excellent biocompatibility and high strength of HA coating. The purpose of this study was to evaluate the effects of HA-coated implants by ion Beam Assisted Deposition(IBAD) method in comparison to the sand-blasted and machined surfaces. Osteoblast culture test, removal torque test and histomorphometric analysis were performed and the following results obtained; 1. Examination of the osteoblast cultures displayed no difference in the secretion of alkaline phosphatase between the various specimen, but IBAD with pure HA specimen showed low alkaline phosphatase secretion(p<0.05). 2. Removal torque tests showed HA-coated implants by IBAD method to be similar in high value to the implants with sand-blasted surface than the implants with machined surface. And the ovariectomized group showed low mechanical test value than the normal group(p<0.05). 3. Histomorphometrical comparisons were performed on undecalcified ground sections. HA-coated implants by IBAD method demonstrated the highest mean bone-to-metal contact ratio on all threads and 3-best consecutive threads, and the implants with sand-blasted surface and implants with machined surface was in the next consecutive order(p<0.05). HA-coated implants showed slightly higher bone-to- metal contact ratio than sand-blasted implants, but no statistically significant difference was obtained between the two materials. The ovariectomized group showed lower value of bone-to-metal contact ratio than the normal group, but no statistically significant difference was obtained between the two groups. 4. Evaluation of bone volume on all threads and 3-best consecutive threads showed no statistically significant difference among the different surface treatment groups, but showed lower bone volume in ovariectomized group than in the normal group(p<0.05). According tn these results, thin film coated implants with HA showed high bone contact ratio, bone volume and removal torque strength in the short term, but long term observation is needed.

  • PDF

A Study on the Properties of AlN Films Deposited with Nitrogen Ion Beam Assisted RF Magnetron Sputtering (질소이온 빔 보조 마그네트론 스퍼터로 증착 된 AlN 박막의 물성연구)

  • Heo, Sung-Bo;Lee, Hak-Min;Jeong, Chul-Woo;Choi, Dae-Han;Lee, Byung-Hoon;Kim, Min-Gyu;You, Yong-Zoo;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.2
    • /
    • pp.77-81
    • /
    • 2011
  • Aluminum nitride (AlN) thin films were prepared by using nitrogen ion beam assisted reactive radio frequency (RF) magnetron sputtering on the glass substrates without intentional substrate heating. After deposition, the effect of nitrogen ion beam energy on the structural and optical properties of AlN films were investigated by x-ray diffraction (XRD), atomic force microscope (AFM) and UV-Vis. spectrophotometer, respectively. AlN films deposited with $N^+$ ion irradiation at 100 eV show the higher (002) peak intensity in XRD pattern than other films. It means that $N^+$ ion energy of 100 eV is the favorable condition for low temperature crystallization. AFM images also show that surface average roughness is increased from 1.5 to 9.6 nm with $N^+$ ion energy in this study. In an optical observation, AlN films which deposited by $N^+$ ion beam energy of 100 eV show the higher transmittance than that of the films prepared with the other $N^+$ ion beam conditions.

Stabilization of cubic-BN/hexagonal-BN Mixed Films by Post-Annealing (후 열처리에 의한 cubic-BN 상과 hexagonal-BN상 혼합 막의 안정성 향상)

  • 박영준;최제형;이정용;백영준
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.155-161
    • /
    • 2000
  • BN films composed of c-BN(70%) and h-BN(30%) phases have been synthesized by the ion beam assisted deposition (IBAD) process and stabilized by post-annealing. Boron was e-beam evaporated at 1.2 $\AA$/sec and nitrogen was ionized and accelerated at about 100 eV by the end-hall type ion gun. Substrates were negatively biased by DC 400 and 500 V, respectively, and heated at $700^{\circ}C$. Synthesized BN films were in-situ post-annealed at 700 or $800^{\circ}C$, respectively, for 1 hr without breaking vacuum. BN films without post-annealing were peeled off from substrates immediately when they were exposed to the air while those with post-annealing at $800^{\circ}C$ were stabilized. Post annealing reduced the film stress from 4.9 GPa to 3.4 GPa, but no considerable stress release in the c-BN phase was observed, contrary to previous reports that the stress relaxation in the c-BN phase is the main mechanism for the stabilization. Structural and chemical relaxation of non c-BN phase is supposed to be responsible for the film stress reduction and, in turn, stabilization, especially when the c-Bn content of the film is not high.

  • PDF

A STUDY OF ION BEAM ASSISTED DEPOSITION(IBAD) OF TiN ON Ni-Cr Be ALLOY FOR SURFACE CHARACTERISTIC (이온빔 보조 증착법에 의한 TiN 박막도포가 니켈-크롬-베릴륨 합금의 표면 성상에 미치는 영향에 관한 연구)

  • Choi, Soo-Young;Lee, Sun-Hyung;Chang, Ik-Tae;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.212-234
    • /
    • 1999
  • Dental restorative materials must have the physical properties to withstand wear and corrosion. Base metal alloys possess better mechanical properties and lower price than the gold alloys. For these reasons such alloys have largely replaced the precious metal alloys. One aspect to con-sider is the release of metal substances to oral environment. The release of elements from dental alloys is a continuing concern because the elements may have the potentially harmful biological effects on local tissues. The purpose of this study was to minimize metal release on the nonprecious metal surfaces by ion beam assisted deposition(IBAD) of titanium nitride (TiN) Ni-Cr-Be alloys with and without TiN coatings were secured in an wear test machine opposing ruby ball to determine their relative resistance to wear with loom, 200m, 300m and 400m sliding distance. And the corrosion behavior of the Ni-Cr-Be alloys with and without TiN coatings and 3 dental noble alloys have been studied. Potentiodynamic curves were used to analyse the corrosion characteristics of the alloys. The measurement of the released Ni and Cr ions was conducted by analysis of the electrolyte solution with atomic absorption spectroscopy. The results were as follows : 1. The critical sliding distance that wore down TiN coatings of $2.5{\mu}m$ thickness in this study condition was 300m. 2. Ion beam assisted deposition of TiN showed a good surface modification with respect to the properties of wear and corrosion resistance. 3. X-ray diffraction showed that the strongest peak of TiN is TiN(111) in the coatings. 4. The release of Ni and Cr ions from alloys measured by means of atomic absorption spectroscopy was reduced by ion beam assisted deposition of TiN.

  • PDF