• Title/Summary/Keyword: 이영춘

Search Result 152, Processing Time 0.015 seconds

Quality Changes and Pasteurization Effects of Citrus Fruit Juice by High Voltage Pulsed Electric Fields (PEF) treatment (고전압 펄스 전기장 처리에 의한 감귤주스의 품질변화)

  • Kim, Kyung-Tack;Kim, Sung-Soo;Hong, Hee-Do;Ha, Sang-Do;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.635-641
    • /
    • 2003
  • A non-thermal pasteurization technology, high Pulsed Electric Field (PEF) has been thought to be a new alternative processing technology instead of heating. The objective of this study was to examine and compare the effect of PEF and High Temperature Short Time (HTST) treatments on the physicochemical, microbiological and sensory characteristics of citrus juices. Total sugar and titratable acidity values of fresh citrus juice and two treatments were not significantly different each other at p<0.05. The concentration of vitamin C in fresh citrus juice $(31.2{\pm}0.59\;mg%)$ was not significantly different with the value of PEF treatment $(29.4{\pm}0.75\;mg%)$ but was significantly higher than the value of HTST treatment $(27.4{\pm}0.75\;mg%)$. The color values (L, a, and b) in PEF treatment were significantly lower than the fresh citrus juice, but were higher than the values of HTST treatment. Both total bacterial cell counts $(6.65\;{\pm}\;0.08\;log_{10}(cfu/mL))$ and yeast counts $(7.79{\pm}0.07\;log_{10}(cfu/mL))$ in fresh citrus juice were significantly reduced by PEF $(1.39{\pm}0.14,\;2.42{\pm}0.1\;log_{10}(cfu/mL))$ as well as HTST treatment (0, 0). PE activity of fresh citrus juice $(1.3{\pm}0.12\;units/mL)$ was significantly reduced by PEF treatment $(0.11{\pm}0.01\;units/mL)$ and was totally inactivated by HTST treatment. Sensory evaluation scores in flavor, taste and overall acceptability between the fresh and PEF treated citrus juices $(7.2{\sim}7.5)$ were not significantly different but the values of HTST treatment $(5.1{\sim}5.8)$ were lower than others. Consequently, PEF treatment is thought to be a good alternative pasteurization method for fresh citrus juice to HTST treatment due to its strong pasteurization effect, reduced destruction of nutrients and good sensory characteristics.

Effects of Additives on Quality Attributes of Minced Ginger During Refrigerated Storage (첨가물이 냉장 중 생강 다대기의 품질특성에 미치는 영향)

  • Choi, Min-Seek;Kim, Dong-Ho;Lee, Kyung-Hae;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1048-1056
    • /
    • 2002
  • Quality of fresh ginger deteriorates rapidly during low temperature storage, and its storage life is short due to sprouting and microbial spoilage. The objectives of this research were to develop, using additives, a minced ginger product, which could maintain acceptable quality for over 30 days, and to investigate its quality changes during the cold storage. Storage stability of minced ginger product was investigated from the standpoint of the inhibition of brown discoloration, gas formation and liquid-solid separation. Fresh ginger was peeled and ground to produce minced ginger (control). Sodium bisulfite, L-cysteine, NaCl, sodium benzoate, modified starch, and/or xanthan gum were added to the control to minimize quality loss during storage, and to develop an optimum formula (A) of minced ginger. Samples were packed in Nylon/PE films, stored at $5^{\circ}C$, sampled at a 30-day interval, and subjected to quality evaluations. Changes in pH, surface color, gas formation, liquid-solid separation, contents of free amino acids, free sugars, organic acids, and fatty acids were determined. Gas formation was effectively inhibited in samples with sodium benzoate and/or NaCl. Samples with xanthan gum did not result in liquid-solid separation. L-Cysteine and sodium bisulfite were effective in controlling discoloration. pH decreased during storage in all samples, except sample A. Organic acid contents of all samples increased during storage, with lactic acid content showing the highest increase. Free amino acid content decreased with increasing storage time. Free sugar content of all samples decreased during storage. Sensory results showed sample A maintained acceptable quality until 90 days of storage. These results suggest that quality of minced ginger could be successfully maintained with the additions of selected additives for up to 90 days.