• Title/Summary/Keyword: 이송속도 제어

Search Result 79, Processing Time 0.032 seconds

항만용 자율협력주행 동적지도(LDM) 및 관제용 위치인식 설계 방안 연구

  • Kim, Gil-Tae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.157-158
    • /
    • 2020
  • 항만용 자율주행 야드트럭운행 환경은 무신호교차로 주행, 낮은 GPS정확도, 악천후상황주행, 이송 컨테이너 위치변경등과 같이 일반 도로의 센서기반의 자율주행차량 운행과 다르게 매우 복잡하다. 이를 위해서는 항만내 특성을 반영한 실시간 위치, 속도 등에 대한 정확한 인식이 중요한 요소이다. 이를 위해서 센서융합과 V2X기반의 복합적인 항만용 실시간 로컬 동적지도 (Local Dynamic Map) 생성 및 V2X기반의 협력측위를 통하여서 기존의 독립적인 자율주행차량의 위치 인식보다 더 개선된 고정밀 위치 인식 정보추출이 필요하다. 본 연구에서는 복합적인 항만용 동적지도 생성관리시스템의 설계 방안 및 협력측위 기술 적용 방안을 제시하고 이를 활용한 항만 구역내 자율주행차량 및 모든 화물 이송장비들의 실시간 위치 인식뿐만 아니라 이동체의 사전 충돌예측 및 비상정지 안전 제어 가능한 V2X 기반의 인텔리젼스 한 3차원 관제시스템 설계 방안을 제시하고자 한다.

  • PDF

Adaptive Control of End Milling Machine to Improve Machining Straightness (직선도 개선을 위한 엔드밀링머시인 의 적응제어)

  • 김종선;정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.590-597
    • /
    • 1985
  • A recursive geometric adaptive control method to compensate for machining straightness error in the finished surface due to tool deflection and guideway error generated by end milling process is developed. The relationship between the tool deflection and the feedrate is modeled by a modified Taylor's tool life equation. Without a priori knowledge on the variations off cutting parameters, time varying parameters are then estimated by an exponentially windowed recursive least squares method with only post-process measurements of the straightness error. The location error is controlled by shifting the milling bed in the direction perpendicular to the finished surface and adding a certain amount of feedrate with respect to the tool deflection model before cutting. The waviness error is compensated by adjusting the feedrate during machining. Experimental results show that location error is controlled within a range of fixturing error of the bed on the guideway and that about 60% reduction in the waviness error can be achieved within a few steps of parameter adaption under wide operating ranges of cutting conditions even if the parameters do not converge to fixed values.

Intelligent NURBS Surface Interpolation System with Embedded Online Tool-Path Planning (온라인 방식의 공구경로 계획을 내장한 지능형 NURBS 곡면 보간 시스템)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.156-163
    • /
    • 2006
  • The purpose of this study is to improve the machining of free-formed NURBS surfaces using newly defined G-codes which can directly deal with shapes defined from CAD/CAM programs on a surface basis and specialize in rough and finish cut. To this purpose, a NURBS surface interpolation system is proposed in this paper. The proposed interpolation system includes online tool-path planning, real-time interpolation and feedrate regulation considering an effective machining method and minimum machining time all suitable for unit NURBS surface machining. The corresponding algorithms are simultaneously executed in an online manner. The proposed NURBS surface interpolation system is integrated and implemented with a PC-based 3-axis CNC milling system. A graphic user interface (GUI) and a 3D tool-path viewer which interprets the G-codes for NURBS surfaces and displays whole tool-paths are also developed and included in our real-time control system. The proposed system is evaluated through actual machining in terms of size of NC data, machining time, regulation of feedrate and cutting force focused on finish cut in comparison with the existing method.

A Cooperative Object-Transportation Control of Multiple AGV Systems using Decentralized Passive Velocity Field Control Algorithm (분산 수동속도장 제어법을 이용한 다중 AGV 시스템의 협조 이송제어)

  • Suh, Jin-Ho;Kim, Young-Bok;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.261-263
    • /
    • 2006
  • Automatic guided vehicle(AGV) in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control scheme based on virtual-passivity. It is shown that the cooperative AGV systems ensure stability and the convergence to scaled multiple of each desired velocity field for multiple AGV systems. Finally, the application of p reposed virtual passivity-based decentralized control algorithm via system augmentation is applied to be the tracking a circle. Also, the simulation results for the object-transportation by two AGV systems illustrate the validity of the proposed control scheme.

High Gain Observer-based Robust Tracking Control of LIM for High Performance Automatic Picking System (고성능 자동피킹 시스템을 위한 선형 유도 모터의 고이득 관측기 기반의 강인 추종 제어)

  • Choi, Jung-Hyun;Kim, Jung-Su;Kim, Sanghoon;Yoo, Dong Sang;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • To implement an automatic picking system (APS) in distribution center with high precision and high dynamics, this paper presents a high gain observer-based robust speed controller design for a linear induction motor (LIM) drive. The force disturbance as well as the mechanical parameter variations such as the mass and friction coefficient gives a direct influence on the speed control performance of APS. To guarantee a robust control performance, the system uncertainty caused by the force disturbance and mechanical parameter variations is estimated through a high gain disturbance observer and compensated by a feedforward manner. While a time-varying disturbance due to the mass variation can not be effectively compensated by using the conventional disturbance observer, the proposed scheme shows a robust performance in the presence of such uncertainty. A Simulink library has been developed for the LIM model from the state equation. Through comparative simulations based on Matlab - Simulink, it is proved that the proposed scheme has a robust control nature and is most suitable for APS.

Transfer System using Radial Electrodynamic Wheel over Conductive Track (래디얼 동전기 휠을 이용한 전도성 트랙 위에서의 이송 시스템)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.794-801
    • /
    • 2017
  • When a radial wheel is placed so as to partially overlap a conductive plate and rotated, a lift force is generated on the wheel, a thrust force along the edge, and a lateral force which tends to reduce the overlap region. When several of these wheels are combined, it is possible to realize a system in which the stability of the remaining axes is ensured, except in the traveling direction. To validate the overall characteristics of the multi-wheel system, we propose a transfer system levitated magnetically using radial electrodynamic wheels. The proposed system is floated and propelled by four wheels and arranged in a structure that allows the thrusts generated by the front and rear wheels to offset each other. The dynamic stability of the wheel and the effect of the pole number on the three-axial forces are analyzed by the finite element method. At this time, the thrust and levitation force are strongly coupled, and the only factor affecting them is the wheel rotation speed. Therefore, in order to control these two forces independently, we make use of the fact that the ratio of the thrust to the levitation force is proportional to the velocity and is independent of the size of the gap. The in-plane and out-of-plane motion control of the system is achieved by this control method and compared with the simulation results. The experimental results show that the coupled degrees of freedom can be effectively controlled by the wheel speed alone.

기술현황분석 - 공작기계 채터진동 감지용 임베디드 디바이스 개발 및 CNC 자율보정

  • Kim, Dong-Hun;Song, Jun-Yeop
    • 기계와재료
    • /
    • v.24 no.2
    • /
    • pp.96-109
    • /
    • 2012
  • 채터진동은 공작기계에서 가공중에 소재와 공구사이에 나타나는 급격한 상대진동을 말한다. 이러한 진동은 가공 소재 품질에 심각한 영향을 미치는 요소일 뿐만 아니라 가공툴과 기계에 손상을 유발시키는 인자이기도 하다. 본 연구는 공작기계의 구동 중 발생되는 채터진동을 실시간으로 감지하여 공구의 회전속도와 이송 속도를 제어하여 자율보정함으로써 보다 빨리 채터진동의 영향을 보상함을 물론 보다 정밀한 가공물을 생산할 수 있는 채터진동 감지 및 보정에 관한 것이다. 실시간 처리를 위하여 본 연구에서의 공작기계의 채터진동 보상장치는 공작기계에 임베디드 형태의 디바이스로 개발되었으며, 구성은 공작기계의 채터진동을 감지하는 센서와 센서로부터 감지된 채터진동에 따라 보상값을 예측하여 산출하는 채터보상기를 포함하여 공작기계의 CNC제어기의 연계 구성됨을 특징으로 한다.

  • PDF

A Study on the Optimum Design for Preventing Propelling Charge to Military Ammunition Vehicle (탄약운반장갑차의 장약 파손 방지를 위한 최적설계에 관한 연구)

  • Noh, Sang Wan;Kim, Sung Hoon;Park, Young Min;Kim, Byung Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.494-500
    • /
    • 2019
  • The purpose of this study was to determine a method to prevent damage during the transfer of loading through optimal design of loading transfer software for an ammunition-carrying armored vehicle. Typically, an ammunition carrier armored car is equipped with an automated charge transfer system. The load is intermittently damaged during the loading of the cargo, and this needs to be improved. The following improvements and verification tests were carried out. As impact speed increased, the loading speed was reduced 60%, and a special fixture utilizing a force gauge was developed and tested. If the maximum current of 11A for the servo controller is output when the load of the conveyor is generated by interference inside the loading tube, there is a possibility of charge breakage. If the maximum current is low, the load cannot be loaded. In the loading test for the ammunition carrier armored car with the actual charge, the improved design was found to be valid, as the load was not damaged and occurred nominally.

A Cooperative Object-Transportation Control of Multiple AGV Systems using Decentralized Passive Velocity Field Control Algorithm (분산 수동속도장 제어법을 이용한 다중 AGV 시스템의 협조 이송제어)

  • Suh, Jin-Ho;Kim, Young-Bok;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.391-393
    • /
    • 2005
  • Automatic guided vehicle(AGV) in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control scheme based on virtual-passivity. It is shown that the cooperative AGV systems ensure stability and the convergence to scaled multiple of each desired velocity field for multiple AGV systems. Finally, the application of proposed virtual passivity-based decentralized control algorithm via system augmentation is applied to be the tracking a circle. Also. the simulation results for the object-transportation by two AGV systems illustrate the validity of the proposed control scheme.

  • PDF

Position and load-swing control of a 2-dimensional overhead crane (2차원 천정크레인의 위치 및 이송물의 흔들림제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.